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Thick-skinned deformation in orogenic forelands : what we know

In thick-skinned (i.e., basement-involved) FTBs, shortening involves a significant part of the crust
above a deep ductile detachment (# thin-skinned)

A key process by which basement becomes involved is the inversion of pre-existing extensional faults

Basement-involvement in FTBs requires mechanical coupling between the orogen and the foreland and
far-field orogenic stress transmission through the crust and/or mantle lithosphere

Thin-skinned style

Basement involvement in FTBs requires a generally rather hot,
hence mechanically weak lithosphere E

Orogenic forelands may have a complex, polyphase evolution, Pfiffner, 2017
with implication of different structural styles

Pending questions to be addressed today :

* How do stress (orientation / magnitude) distribute and evolve during thick-skinned folding ?

* How does deformation propagate and distribute in forelands ?
Is the sequence of thick-skinned deformation similar to that of thin-skinned deformation ?

* How do fluids flow (and fluid pressure) evolve during thick-skinned folding ?




The Bighorn Basin

and the Sevier and Laramide orogenies
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DeCelles, 2004
Jurassic - Cretaceous:
The Western Interior Late Cretaceous - Paleocene:
Basin The Bighorn Basin
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The Laramide belt = network of anastomosing thick-skinned, basement-cored
anticlines and uplifts separated by basins

- topographic compartmentalization of the former marine Sevier foreland basin
into continental, endorheic basins since the late Cretaceous
- the Bighorn Basin
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Structure of Sheep Mountain

and Rattlesnake Mountain anticlines
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Sheep Mountain anticline
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(Beaudoin et al.,
Tectonophysics, 2012)

Rattlesnake Mountain
anticline
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immature o
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(Erslev, 1986)




Fracture populations

at Sheep Mountain and Rattlesnake Mountain anticlines
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Sheep Mountain anticline

(Bellahsen et al., 2006; ,'
Amrouch et al., Tectonics, 2010) %,
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Sheep Mountain anticline

Distribution of
joint/vein sets at
different
structural

locations within
the fold

(limbs, hinge, pericline)

Sme 19 Site 20 Sme 21 Sme 75

BACKLIMB %KK%X

Site 85 Site 83 site 59 Site 74 Site 73
N N

(Bellahsen et al., 2006;
Site 52 Fiore, 2007;
Amrouch et al., Tectonics, 2010)




Pressure-solution and meso-scale faulting at Sheep Mountain anticline

(Amrouch et al., Tectonics, 2010)




Relationships between pressure solution seams and veins

Pics stylolitiques NO45 »

Pics stylolitiques N135




Sequence of fault-vein development at Sheep Mountain anticline

(Amrouch et al., GRL, 2011)

Sevier ? LPS Laramide LPS Laramide LPS aramide LPS Folding LAtE Fald

; | ,.‘ _ Tightening

Set L-II

Laramide

- Mode T opening of pre-Laramide joints/veins

- Shear reactivation of pre-Laramide set S veins (LPS).

- Laramide stylolites with NE-trending peaks and mode I opening of veins (LPS)

- Reverse faulting parallel to the fold axis (LPS).

- Mode I opening of syn-folding, outer-rim extension-related veins

- Late stage fold tightening (LSFT) marked by strike-slip faults and reactivation of tilted
set S joints/veins as small reverse faults in the forelimb
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Rattlesnake Mountain
anticline

(Beaudoin et al.,
Tectonophysics, 2012)
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Fracture sequence in the Bighorn Basin (SMA, RMA and other folds)

Fracture
set

Mean strike

of fractures

Related
Tectonic events

Set S-1

090°E

Sevier layer-parallel
shortening o

Set S-11

Set S-111

180°E
to 020°E

110°E

Formation of the
flexural foreland basin

Sevier layer-parallel
shortening  ?

<

Laramide layer-parallel
shortening

Set L-11

Local curvature-related
extension

Set L-111

045°E

180°E
to 160°E

apruieIe

Late stage of
fold tightening

Basin and Range
extension

(Beaudoin et al., Tectonophysics, 2012)

Systematic vein sets




. Early-foldin
*Widespread fold-related fractures quep-Pap;/llel Shogfening

(early-, syn- and late- folding),
especially early-folding, LPS-related

* Pre-folding fractures are unrelated
to either fold geometry or kinematics
and are often reopened /sheared
during folding
possibly inhibiting development of
fold-related fractures

Syn- to late folding
related fracturing

- Complex fracture patterns
in folded strata

*Variable vertical persistence of
fractures
(stratabound vs through-going),
hence potential variable vertical
connectivity
and break in stratigraphic

compartmentalization
(= potential impact on fluid flow)

(f) Fold-tightening related fracturing

(Tavani et al., Earth Science Reviews, 2015)



Reconstruction of paleostress orientations and regimes
by inversion of calcite twins

(and striated meso-faults)
at Sheep Mountain and Rattlesnake Mountain
anticlines




Etchecopar (1984) and Parlangeau et al. (2018) technique
of inversion of calcite twin data for stress

* Orientation of principal stresses
* Differential stress magnitudes

(01 - 53) and ((72 - 0-3)

Twinning sense
7

R 7 /
/ bt
. { 3 /f
\ \ \

) / C Twinning
Calcite from S and L-I veins _ direction
and/or rock matrix e {01-12] twin plane

(01-03)/2 <Ts = (G . §) <(01-03)/2




(Amrouch et al., Tectonics, 2010) Sheep Mountain anticline

Pre-folding stage:

Set S formed under a WNW horizontal o1
in a strike-slip stress regime (pre-Laramide : Sevier ?)



Sheep Mountain anticline

Early-folding stage:

(Amrouch et al., Tectonics, 2010)

Set L-I formed under a NE horizontal o1
either in strike-slip or compressional stress regime
= Laramide Layer-Parallel Shortening (LPS).




Sheep Mountain anticline

Late-folding stage:

(Amrouch et al., Tectonics, 2010)

Faults and calcite twins also reveal Laramide late fold tightening
under NE horizontal 1 in a strike-slip stress regime




Paleostress orientations and regimes in the Bighorn Basin

Fracture |Mean strike Paleostress Paleostress from Paleostress Related
set of fractures| from fractures triated microfaults | from calcite twins Tectonic events

090°E Sevier layer-parallel

Set S-T to 060°E \ shortening ?

180°E Formation of the
to 020°E flexural foreland basin

dprueIR -1,

Set §-III ‘ Sevier layer-parallel
shortening ?

Laramide layer-parallel
shortening

Local curvature-related
extension

Late stage

Set L-III . .
© fold tightening

180°E .
to 160°E e ' > Basin and .Range
extension

opIUEIR ]
150

(Beaudoin et al., Tectonophysics, 2012)



(Weil and Yonkee, 2012)
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Stress history of the Bighorn Basin = polyphase

Laramide stress + pre-Laramide (Sevier ?) stress
e Direct time

I ?
Based only on (1) orientations of microstructures constraints :
and (2) relative chronology between
microstuctures and with respect to folding




Absolute (U-Pb) dating of calcite veins in the Bighorn basin :
constraints on stress build-up and

on the sequence of folding and basement thrusting
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Paleostress

Event : .
orientation

Sevier
LPS

il |Laramide

LPS

Laramide
folding

TERA-WASSERBURG DIAGRAM

Technically challenging
because of low U
concentrations
(<10 ppm) in calcite
-> several laser spots
are needed
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100- 80 Ma

W/SW Sevier shallow stress guide (sedimentary cover)

E/NE

Sedimentary cover

Sevier stress (east-directed) ——

& - l|.‘ r“ - -
S _ S .. Inherited faults”’
Precambrian basement~._ .~ -, o

= e i
B -

crustal weak zone

Sevier stress ——y Lara:mid: stress overprint

’ . s Actwf: faults
.»*"_~Laramide stress
(northeast directed)

Lammzde cfeep stress gmde (mrﬁzrhosphm 9)

60- 50 Ma BHM

(Beaudoin et al., Geology, 2018)

(Erslev, 1993)

*Occurrence of Sevier and
Laramide related veins

*Time overlap between Sevier and
Laramide stress
reflects spatial stress
compartmentalization
within the basin

*Sequential thrust reactivation of
inherited basement faults.
Vertical transmission
of Laramide stress
from the basement to the overlying
(attached) cover
- progressive Laramide stress
imprint

*Shallow Sevier stress guide
(cover) vs deep Laramide stress
guide (crust)

Cordilleran Stress Guides

Cordilleran Thrust Belt

Laramide Foreland Arches

Nsw:;g'g'w"%',“ﬁz"c'”'!”'HIHHI!HH
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Schematic cartoon showing multiple stress guides and multilevel detachment during
Cordilleran-Laramide lateral compression.




LA-ICP-MS U-Pb direct dating of calcite veins in the Bighorn Basin :

-provides absolute time constraints on formation/cementation
of systematic vein sets
-confirms the relevance of vein sets to large-scale tectonics
-confirms existing models for propagation of Sevier deformation and for
exhumation of Laramide basement-cored structures;
-helps refine age and sequence of activation of individual basement thrusts;
-improves our understanding of stress transmission and build-up throughout
the basin.

- Thin-skinned orogenic wedges develop through a progressive outward
(forelandward) stress loading and propagation of deformation
through time;
- Thick-skinned systems show a more erratic sequence owing to the
reactivation of basement heterogeneities that govern the stress field in
the overlying sedimentary cover.



Magnitudes of differential stresses revealed by
calcite twin analysis
at Sheep Mountain and Rattlesnake Mountain

anticlines




Early-folding and late-folding paleo-differential stress magnitudes
from calcite twinning paleopiezometry

Sheep Mountain anticline

Early-folding

T . Late-folding
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(Amrouch et al.,
Tectonics, 2010)




Stress perturbations in the cover
at the tip of the underlying basement fault
starting to move during Laramide stress build-up

b)
al—a3 (Fa)
s 3000m

a)

vertical observation grid ———

5000 100 15000 30000

(Amrouch et al. Tectonics, 2010)



Early-folding and late-folding Laramide paleo-differential stress
magnitudes from calcite twinning paleopiezometry

(normalization of RMA to same depth than SMA for comparison)
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(Beaudoin et al., Tectonophysics, 2012)




Sub-constant low background of Laramide differential stresses
in the cover of about 20+10 MPa

Local variations
related either o perturbations at the tip of underlying basement thrusts and/or fo stress
increase where strata remain weakly internally deformed.

Asymmetrical stress distribution between fold limbs
echoing asymmetry of folding above a basement thrust

Sevier foreland

- Laramide differential stresses
not attenuated between RMA and SMA,
in contrast to the eastward attenuation
of Sevier stresses.

500 1000 1500 2000 2500
(Van der Pluijm et al., 1997)

- influence of the structural style :
stress magnitudes in the cover mainly controlled by
local (basement) structures during thick-skinned tectonics rather than
by the distance to the orogenic front as in thin-skinned tectonics.




Paleo-hydrology

at Sheep Mountain and Rattlesnake Mountain anticlines




Vein-filling calcite : an access to fossil fluids

Calcite veins : Host rocks :

-0, C stable isotopes -0, C stable isotopes
-Microthermometry of fluid - Sr ratios
inclusions
- Sr ratios - Fluid-rock
interactions

- Fluid temperature,
origin and pathway

Host-Rock

Host-Rock

=% Host-Rock
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O, C stable isotopic signatures of fluids at SMA and
RMA

Rattlesnake Mountain Anficline (RIVA)
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Evolution of fluid system in SMA and RMA
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Evolution of fluid system in SMA and RMA

(Beaudoin et al, 63, 2011; Basin Research, 2014)
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3 stages of fluid system opening :
Sevier flexure, Laramide folding, post-Laramide extension
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| Localization of basement-derived
% | hydrothermal fluid pulse at SMA

Meozoic N Vertical migration of deeper radiogenic hot fluids
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(Beaudoin et al, 63, 2011; Evans and Fischer, 2012)
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a- Sevier early LPS - Set 5-1

b- Sevier formation of the flexural basin - Set S-1T
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Quantification of principal stress magnitudes and
fluid (over)pressures

at Sheep Mountain and Rattlesnake Mountain anticlines




Quantifying principal stress magnitudes

Finding for each deformation step, using a simple Mohr construction, the values of o1,
o2 and o3 required for consistency between differential stresses estimated from
calcite twinning, frictional sliding along preexisting planes (i.e., Byerlee's law) and newly
formed faulting/fracturing.

T
(Shear stress)

A FAILURE ENVELOPPE

(Fresh faulting) ‘

~
The Mohr circle should be FRICTION CURVE

tangent to the failure enveloppe (Sliding on preexisting planes)
for newly-formed fault planes

63\ O2 G4
Reactivated planes ( <‘ G1-0 3->>

> G, (Normal stress)

should lie above K
Maximum differential stress

the friction curve
computed from inversion of

The vertical principal calcite twin data

stress should correspond

Lacombe, 2001)
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Experimental determination of the intrinsic failure envelopes of the
Phosphoria and Madison formations
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(Amrouch et al, GRL, 2011)
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Determination of principal stress magnitudes
using simple Mohr construction (SMA)
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(Amrouch et al, GRL, 2011)




Quantifying paleo fluid (over)pressure

Assumption of a vertical
. principal stress equal to the
(ailure) effective weight of overburden

A Byerles Theoretical effective vertical

Griffith (reactivation)

(ailure) | principal stress calculated
\ S presnze considering lithostatic pressure

(01-03) determined from calcite

twinning paleopiezometry Cor'r'eC'I'ed fr'om hYdrOSTaTiC
T my 0P fluid pressure:

Effective state of stress -~
( } J effective lithostatic pressure

N~

%

Oyrer—(P- Py)-9:-N

Comparison between g, and the reconstructed effective vertical principal
stress 0.¢ -

AGv:(jvref =~ Oyeff

A non-zero Ac, reflects either fluid over- or under-pressure or burial
changes (sedimentation or erosion): when Ao, is positive, either the burial
depth was less than the value considered for the calculation of o, or the
system was overpressured.

vref
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(Amrouch et al, GRL, 2011)




SMA

sov ) Ac, / fluid overpressure evolution
4 - Forelimb
O Backlimb
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/ extensional fractures.
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Laramide compression |#xhumation

-porosity reduction by pressure-solution

-poor hydraulic permeability of fracture sets (low vertical
persistence or fast healing)
-strong increase in horizontal stress magnitude
-input of exotic fluids info the reservoir in response to a
large-scale fluid migration.

1. hydraulic permeability of the reservoir. Break of fluid
A compartmentalization within the Madison-Phosphoria core
- ->consistent with geochemistry of syn-folding vein cements

\ / 4. Drop during folding
¥/ due to curvature-related fracturing that enhanced the

between 0,8 hm
and 2 im
during jolding
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i J time (Beaudoin et al., MPG, 2014)




Conclusions : Take-home
message

Integrated picture of stress (before and) during
(thick-skinned) folding

Evolution of stress magnitudes and pore fluid (over) pressure
through time during thick-skinned folding

Changes in P-T-X conditions, fluid flow, fluid (over)pressure and fracture
development as well as stress and strain pattern within folded strata consistently
linked to the geometric/kinematic macroscopic evolution of folds

- to be compared to mechanical models

Feedback between tectonic style and paleo-hydrology

Direct age dating = improved understanding of the sequence of deformation and
stress distribution in polyphase orogenic forelands
- access to fluid flow rate and deformation propagation rate

Interest of multi-techniques/scales approach
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