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Why to characterize stresses in the crust ?

The motivation arises :

from applied geological purposes, such as geological
hazards, engineering activities and resource
exploration;

and

from fundamental geological purposes, such as
understanding the mechanical behaviour of geological
materials and deciphering various tectonic mechanisms,
from those related to plate motions at a large scale to
those causing jointing and faulting or even
microstructures at a smaller scale.




Despite an increasing humber of in situ stress
measurements, magnitudes of crustal stresses remain
poorly constrained...

Twinning of minerals depends on the magnitude of the applied shear
stress.
One can make use of this property to evaluate the magnitude of the
stress which has been supported by a rock during its history.

An access to paleostress magnitudes in the
upper crust : Calcite twinning paleopiezometry

In the upper crust, brittle deformation of carbonate rocks is
accompanied by pressure-solution, porosity reduction and
crystalline deformation.

At low T (0-300°) calcite plasticity corresponds to the prevailance
of e-twinning



How to constrain both orientations
and magnitudes of past stresses (1) :

calcite twinning paleopiezometry



Twinning ~ simple shearing in a particular sense and direction
along e-planes {01-12}
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Stress analysis of calcite twinning :
The ‘historical’ techniques



Jamison and Spang (1976) :
determination of differential stress magnitudes

if ta is known, AG
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In a sample with no preferred
crystallographic orientation, the
percentages of grains twinned on O, 1, 2
ou 3 twin planes are functions of the
applied differential stress (c1-63) value.
Experimentally calibrated
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Limitations :
- uniaxial stress
- critical resolved shear stress for twinning
= constant ta = 10 MPa
- Yakes into account neither grain size nor
mutual compatibility of twin systems



Rowe and Rutter (1990) : determination of differential stress magnitudes

Twin density, D
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Tosumup :

None of these techniques allows to relate differential stresses
to principal stress orientations and stress regimes.

- significance of ‘bulk’ maximum differential
stresses in case of polyphase tectonics ?

Moreover,
technigues are commonly used separately
without care of their specific limitations



The Calcite Stress Inversion Technique CSIT 1/2
(Etchecopar, 1984; Parlangeau et al., 2018)



Determination of the reduced stress tensor

The inversion process is very similar
to that used for fault-slip data :
twin gliding along the
twinning direction within the twin
plane is geometrically is comparable
to slip along a slickenside lineation
within a fault plane.

<(G1- <Ts = (0. s) <(01-03)/ i I I
(01-03)/2 <Ts = (G S). (0.1- Giira But the inversion process takes into

| Taiseldemadess panmonmacesiTs<Ta | account both twinned planes
(resolved shear stress > CRSS)
AND
untwinned planes

(resolved shear stress < CRSS),

Orientation of principal stresses and stress ratio . . L - .

o (o) a major difference with inversion of
(o) fault-slip data

Inversion of calcite twin data |:L Reduced stress tensor
(4 parameters)

+ dimensionless differential stress (0" 1 — 05 ) a




Critical Resolved Shear Stress (CRSS) ta = resolved shear stress along the twinning direction that
must be reached to induce a significant plastic (permanent) deformation, i.e., to induce motion of a
number of dislocations so that sliding becomes macroscopically observable.

Commonly associated with a critical point on the stress-strain curve for a monocrystal.

Critical shear stress value
for twinning (MPa)
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Critical shear stress value
calculated at 3% strain
Turner et al., 1965

Critical shear stress value

calculated at yield
Turner et al., 1954

T°C

S
-

Temperature (°C)

100

Strain

(Lacombe, 2001, 2010)
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® Lacombe and Laurent, 1996 W Laurent et al., 2000
¥ De Bresser and Spiers, 1997V Spiers and Wenk, 1980

The CRSS is ~ independent on T°C but depends on grain size and internal strain (hardening)




Inversion of calcite twin data [? Reduced stress tensor
(4 parameters)

Orientation of principal stresses and stress ratio
02—03
D =
O1—03
+ dimensionless differential stress

(51 _53)/78-

‘constant’ CRSS ta
for a set of calcite grains
of homogeneous size

Deviatoric stress tensor (5 parameters)
0,+0,+0
TDZT—( 1 32 3j|

(01 - 03) (0'2 — 03

Orientation of principal stresses and differential stress magnitudes‘




Some applications of calcite twin analysis
for reconstructing regional tectonic evolution



Provence, Eocene compression
(Lacombe et al., 1991)
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extension
(Lacombe et al., 1990)
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Zagros : Neogene/ongoing collision between Arabia and Central Iran
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(Lacombe et al., 2006) (Lacombe et al., 2007) (Lacombe et al., 2006) and GPS shortening

rates (Walpersdorf et al., 2006)



Differential stress magnitudes
in fold-and-thrust belts and orogenic forelands



High Iranian

Simply Folded Belt Zagros Belt p (Lacombe et al.,
imply Folaed be > g9 - lateau 2007)

k< 15km
e
Erosion

o
o
1 1

No stress data
available

c1-63 (MPa)
S

n
o
: 1} L

- Active  Tnactive
o smari-
DEFORMATION Agha-Jari wHZF ‘)

FRONT Mishan Jahrom Pal.+Mesoz.+
\ Paleocene

MZT
\ Gachsqrﬂ\y \ A e R
NS AARTSTD, ‘ e Backstop ? . %>25km

\ Basement \N Hormuz salt SISH’\ICC\“Y Inactive Q

\ —
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The relative homogeneity of differential stresses agrees with the homogeneously
distributed shortening across the SFB, where no deformation gradient foward the
backstop is observed in contrast to classical fold-thrust wedges

Both pre- and post-folding differential stresses are low --> folding likely occurred at
low stresses; this favours pure-shear deformation and buckling of sedimentary rocks
rather than brittle tectonic wedging.




(Hnat et al., 2013; (Lacombe et al., 2007) (Xypolias & Koukouvelas,
Van der Pluijm et al., 1997) 2005)
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(Beaudoin and Lacombe, submitted)

... and also 1n the north Pyrenean foreland
(Lacombe et al., 1996; Rocher et al., 2000)...



Paleo-differential stress vs paleodepth




On the difficulty of establishing
a paleostress/ paleodepth relationship

In drill holes, contemporary stresses are determined directly at a
given depth / in a narrow depth interval.

In contrast, paleopiezometers are generally sampled and analysed
after they have reached the surface, i.e., after exhumation from an
unknown depth z, and establishing a Ac vs z relationship for
paleostresses requires independent determination of Ac and z.

In FTBs, paleo-z estimates are usually derived from stratigraphic/
sedimentological studies or from thermometry coupled with
assumption on paleothermal gradient

In addition, in case of polyphase tectonism, deciphering the Ac vs z
evolution requires to unambiguously relate Ac to both z and to a
specific tectonic event.
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(Lacombe, 2001)
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For a favourably oriented pre-existing cohesionless fault plane,
the condition of reactivation can be written as follows :

(01 =Py) /(73 —Py) = [(w* + 1) +u]]

o — a3 =2gz(A— 1)(1 — [(* + 1) +u]*)

- 0.5
14+ [(p” +1) " +p7)
Strike-slip stress regime
and Reverse stress regime

oy — a3 =pgz (i — 1)(1— [(u® + 1) +u]?)
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I. Frictional equilibrium

Compressional regime

~hydrostatic conditions
06<p<1.0

Il. Frictional equilibrium
Strike-slip regime
(LaCOI‘nbe, 2007) ~hydrostatic conditions
06<u<1.0

lll. Upper tier of the ductile flow regime
(Engelder, 1993) ?
Stress released by “ductile” mechanisms

IV. Brittle-ductile transition ?

Most paleostress data support a first-order frictional behaviour of the
upper continental crust.




Differential stress magnitudes (MPa)
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At the present-day state of our knowledge and with the
available dataset, most paleostress data support a first-
order long-term frictional behaviour of the upper
continental crust.

The crustal strength down to the
brittle-ductile transition is generally controlled by
frictional sliding on well-oriented pre-existing faults
with frictional coefficients of 0.6-0.9 under hydrostatic
fluid pressure (frictional stress equilibrium).

Some ductile mechanisms may, however, relieve stress
and keep stress level beyond the frictional yield, as for
instance in the detached cover of forelands.
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How to constrain both orientations
and magnitudes of past stresses (2) :

Stylolite roughness paleopiezometry



Thermodynamics and kinetics of the growth of
a stylolite :

Once dissolution starts, there

between:

IS a competition

- two stabilizing (smoothening) forces, long-range elastic
forces and local surface tension, that tend to reduce
the Helmholtz free energy of the solid > they flatten
the surface by preferentially dissolving areas of local
roughness ;

- a destabilizing (roughening) force due to pinning
particles on the stylolitic surface, that resists
dissolution in specific locations, locally increasing the
free energy and producing peaks and teeth.

calcaire

résidu

calcaire



scaling of the roughness

Fourier Power Spectrum
P(k) _ kﬂ—ﬂh

if the signal is self-affine

/ \f\jwv

binnesd data

. ;:'r;g.il%;;au. —
- — miadellad fit
h-o' 5 % prossover = 1,480 mm

small wavelength

. surface energy
large wavelength *\

elastic energy :

. h=1
.

cross-over .

10’ 10°
k(mm-')

- two growth regimes (elastic / surface energy dominated regimes), each of those
being characterized by a roughness exponent (Hurst exponent) and separated by a
crossover length (Lc) that describes the scale at which the switch between regimes

of control occurs.




(Schmittbuhl et al., 2004)

L. = vE
‘o BGmGd

y : surface energy at the solid-fluid interface, E : Young modulus,
B =v(12v)/n : dimensionless number with v : Poisson ratio,
om : mean stress, od : differential stress.

Considering an isotropic stress in the stylolite plane
(sedimentary/bedding-parallel stylolites - BPS) :

—
G,> O0y_O L. = i Oy = vE
Y H= "“h C 2 \Z
OH=Cn :(1%) Ov 2 1 (1 Bao-fz i \ LCB(X
i @=3 (13) (1_—vv) Op SO (ﬁ) Oy

This allows to predict the magnitudes of the normal-to-the-plane stress
and of the two in-plane stresses



In contrast, a tectonic stylolite records a stress anisotropy within the stylolite plane
(02 different from o03) : depending on the orientation of the stylolite the crossover
length Lc reflects the differential stress 01-02, 01-03 or a value in between.

If Lc is determined from a 2-D signal, then it depends on the orientation of the cut
through the stylolite with respect to 02 and a3 (ol horizontal and normal to stylolite).

maximum Le¢

The relationship between Lc and the angle © is a periodic function, with minimum and
maximum Lc separated by 90° - roughness inversion on 2-D scans of three surfaces
normal to the stylolite yields 3 Lc and the 3 corresponding angles 6 between the cuts
and the vertical direction.

The minimum and the maximum Lc correspond to (01-03) and (01-02). If © associated
with Lcmin is close to the vertical plane, then o2 is vertical (SS regime); otherwise, if 6
associated with Lcmax is close to 0°, then o3 is vertical (R regime).



To summarize, Stylolite Roughness Inversion

(SRI) works for :

« Stress direction

« Depth of sedimentary stylolites (from
shallow to 4000m)

« Stress associated with tectonic stylolites

(needs 3D and assumption of depth)
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A powerful toolbox : combining
calcite twinning
and stylolite roughness
paleopiezometry
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Early-folding and late-folding Early-folding
Laramide paleo-differential
stress magnitudes from calcite
twinning and stylolite roughness

paleopiezometry at SMA and RMA
(normalization of RMA to same depth than SMA)
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Combining stylolite roughness and calcite twinning
paleopiezometry reveals the complexity
of progressive stress patterns during folding
(Monte Nero anticline, Apennines, Italy
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Beaudoin
etal., 2016
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Quantification of principal stress magnitudes
and fluid (over)pressures

at Sheep Mountain
and Rattlesnake Mountain anticlines




Quantifying principal stress magnitudes

Finding for each deformation step, using a simple Mohr construction, the values of o1,
o2 and o3 required for consistency between differential stresses estimated from
calcite twinning, frictional sliding along preexisting planes (i.e., Byerlee's law) and newly
formed faulting/fracturing.

T
(Shear stress)

A FAILURE ENVELOPPE

(Fresh faulting) ‘

~
The Mohr circle should be FRICTION CURVE

tangent to the failure enveloppe (Sliding on preexisting planes)
for newly-formed fault planes

G3\ O2 01
Reactivated planes ( <‘ o1 03>

> G, (Normal stress)

should lie above K
Maximum differential stress

the friction curve
computed from inversion of

The vertical principal calcite twin data

stress should correspond
(Lacombe and Laurent, 1992; 5 thavolicabioad

Lacombe, 2001)




Siége sphérique en acier durci
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_Cellule en acier doux
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Experimental determination of the intrinsic failure envelopes of the
Phosphoria and Madison formations
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(Amrouch et al, 2011)
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Quantifying paleo fluid (over)pressure

Mohr-Coulomb
(failure)

Griffith
(failure)

Effect of fluid
\ pressure
~N

03 02 01
Effective state of stress

(

S ——— .

=0V i ®
depending on stress regime

Assumption of a vertical
principal stress equal to the
effective weight of overburden

A Byerlee Theoretical effective vertical
pesctvation principal stress calculated
BN Considering lithostatic pressure
twinaing paleopiezoretry corrected from hydrostatic
o ou(MPa) fluid pressure:

J effective lithostatic pressure

Oyref— (p' pw)-g-h

Comparison between o, and the reconstructed effective vertical principal

stress o0¢

chv:Gvref =~ Oyeff

A non-zero Ac, reflects either fluid over- or under-pressure or burial
changes (sedimentation or erosion): when Ao, is positive, either the burial

depth was less than the value considered for the calculation of o
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system was overpressured.



(Beaudoin et al., 2014) Comparison of Ac,, evolution
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Basement-derived hydrothermal
fluid pulse at SMA

Vertical migration of deeper radiogenic hot fluids
within the sedimentary cover explained by the
development of curvature-related fractures that
enhance the hydraulic permeability of the reservoir
and break fluid compartmentalization by stratigraphy.

Link with structural style

(Beaudoin et al, 2011; Evans and Fischer, 2012)
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Comparison with values of fluid overpressures in sedimentary basins
derived from paleo-pressure reconstructions based on gas composition in hydrocarbon fluid
inclusions or from direct measurements in limestone or shale/sandstone reservoirs.

Pressure (MPa)
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Measurements in various basin
limestones (Hunt, 1990)
Measurements in sandstones, Navarin
Basin, Alaska (Yu and Lerche, 1996)

Measurements in shales, Viking Graben,
North Sea (Nordgard Bolas et al., 2004)

Measurements in shales, Cook Inlet
Basin, Alaska (Bruhn et al.,
2000)

Measurements in sandstones, Camarvone
Basin, Australia (van Ruth et al., 2004)

Measurements in underpressure
s reservoirs, Ordos Basin, China (Hao
-LPS1-2 L-LPS 3 stal, 2012)
N Pressure reconstructions
bt > Evolution reconstructed from
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Combining paleopiezometers
(e.g., calcite twins / stylolites) :
a powerful toolbox that helps constrain ...

- stress orientations, regional tectonic history
- values of tectonic (paleo)stress magnitudes
-pore fluid (over) pressure through time in reservoir analogues
- fransmission of orogenic stresses to the foreland
- upper crust rheology
- put mechanics into basin/thrust belt kinematic modelling

among others...
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Calcite twins as
low T thermometer
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type 1 type II type III type 1V
Geometry -thin ~thick (>>1pm) -curved twins -thick, patchy
-straight -straight -twins in twins -sutured boundaries
Description’ -rational -slightly lenseshaped |-irrational -trails of tiny grains
-rational -completely twinned |-irrational
Interpretations |[-little deformation -considerable def. -large deformation. |-large deformation
<little cover -completely twinned |-intracrystalline -recrystallization
-low temperature grains are possibl def. hani (grain boundary
e.g. (r-& f-glide) migration)
-(post-metamorphic) |-syn- or post- -syn-metamorphic |-pre- or syn-

-(late tectonic) metamorphic deformation. metamorphic
Temperature < 200°C 150-300°C > 200°C >250°C

Mean twin intensity (#/mm)

3
Mean twin width (microns)

Increasing temperature

Twin Width

(Burkhard, 1993; Ferrill, 1998;
Ferrill et al., 2004)

Twin Strain
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e-twinning and r, f-gliding systems in calcite

ad (Turner and Weiss, 1976;
De Bresser et al., 1997)

el
(1012>
O

® re C.e =265°
" ¢1101) ej,e =44,5°
© <0001) €, i =:73;-5'5>°
iel ei,fj =37,5°

° &tz i =75°
C.ri =44,5°

rl
(101D




Faisceau
d’électrons

Cliché de Kikuchi

Ecran de
phosphore

Square

lOATx Y%’n 1%“ 1%11
O OO OO OO OO

Grid of EBSD analysis
Line

OOOOOOOOO

Grid of EBSD analysis

|

T T R T T B
e ”

’f&\f& ™

=

:

3
&

=ik

[ <.

| ==
Square 3

§ 200 . .
| r——

Square 1 Squar 2 Square 3

Square 4




Consistent twinned planes
Inconsistent twinned planes
Consistent untwinned planes
Inconsistent untwinned planes

Twinned planes
Untwinned planes
Internal twinning threshold

Position "Turner"
Resolved shear stress

% twin planes
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Influence of grain size

Slope = twin density,
does not depend on grain size

(Rowe and Rutter, 1990)

T =400°C

Number of twins per grain
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Estimates of syn-folding erosion

ap Sheep Mountain Anticline

Aov (MPa) The post-folding A, value can be used to calculate
nr — the eroded/ burial thickness E as well as the post-
35| |0, folding overburden thickness H
30 - i E =Ag, /[(prock . pwaTer‘)g]
il H :[Gv‘rh - As:v] /[(prock B pwa‘rer‘)g]
201 e The high A, value recorded during the LSFT
15 - suggests exhumation of the strata, consistent with
10| . o | soraa the development of topography during folding.
between 0,6 hm
T comererion | LTeide R urin folding Drastic drop in fluid pressure during folding :
0 ire -either a hydrostatic fluid pressure prevailed in the
LPS3 Renctination 2 LPS-3 Syn-folding Late jold B ik
. R o Cry B SeleinliE Sgheeting reservoir - exhumation :1.3/ 2km at SMA/RMA
b) Ratibesnake Mouniain Anticling chronological . R a .
P -or a supra-hydrostatic fluid pressure still persisted
a0 after folding (overpressure not totally released) -
3 syn-folding value of A, reflects the remaining fluid
overpressure

30 - exhumation : 0.6/0.8 km at SMA/RMA

25

20 P Assuming a syn-folding erosion of 0.6-2.0 km and a

- ' duration of folding of 5-20 Ma -> exhumation rate
'- by folding of 0.03-0.40 mm/yr, consistent with

exhumation/rock uplift rates in other Laramide

5F % il m;“ arches derived from LT thermochronology and

3 . paleoelevation/basin analyses.
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Rectangular layer type with residue layer

w.

Simulation

Simulation

Compaction estimate: good, Growth: linear on peaks, Sealing if
median surface collects material, can leak across spike flanks

Koehn et al., 2016

Suture and sharp peak type

A *"q»

-

r\?%{* A
Y IRV ,\/ \’(\j

Simulation

Compactlon estimate: underestimated, use non-linear scaling law,
Growth: non-linear, Sealing if collecting sealing material

Simulation

Compaction estimate: very bad, Growth: non-linear,
best sealing capabilities if collecting enough sealing material

Stylolite types suitable for paleostress estimates : must display small-scale and large-

scale amplitudes

-Suture and sharp peak (IIT)

-Seismogram (IT) if one considers the morphology in between the large teeth that

reflect pinning rather than dissolution

- Simple wave (IV) provided they display two wavelengths




Stylolites are very common rough dissolution surfaces

They can be used to:

1. Estimate the direction of the main compressive stress
2. Estimate burial depth

3. Estimate tectonic stresses

Vitesse de dissolution a I’interface (Rolland et al., 2012) :

vd=T

T's : Tension de surface prenant en compte les effets induits par la courbure de la surface.

I, : Interactions élastiques décrivant la déformation de la surface.

1 : désordre présent dans la roche (hétérogénéités) et dont les variables sont indépendantes du
temps.




Agregats cristallins Monocristaux
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Evolution of fluid system in SMA and RMA

Syn-flexure Syn-folding
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Minimum principal stress

Stress perturbations in the sedimentary -
cover at the tip of the underlying basement [
fault starting fo move during Laramide stress il & 7
build-up

a)

vertical observation grid ——H—__

/II
S 4
\ |
 \
S thrust fault

(Bellahsen et al., GRL, 2006;
Amrouch et al.,
Tectonics, 2010)
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