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Thick-skinned deformation in orogenic forelands : what we know

In thick-skinned (i.e., basement-involved) FTBs, shortening involves a significant part of the
crust above a deep 'ductile’ detachment (z thin-skinned)

A key process by which basement becomes involved is the inversion of pre-existing
extensional faults

Basement involvement in FTBs requires a significant degree of mechanical coupling between
the hinterland and the foreland

Thin-skinned style

Basement involvement in FTBs requires a mechanically
weak lithosphere

Orogenic forelands may have a complex, polyphase evolution,

with implication of different structural styles
in time and space

Pfiffner, 2017




Topics to be addressed today :

* P-T conditions of deformation of cover/basement rocks
* Deformation mechanisms within basement rocks

* Timing and sequence of deformation /exhumation of basement units

Basement-involved shortening in the upper plate above an oceanic
flat-slab subduction zone

Two different settings / case studies :

- the Laramide Province developed
within the upper plate of a subduction orogen

-the Alpine External Crystalline Massifs
formed at the expense of the
lower plate in a collision orogen




The Bighorn Basin

and the Laramide orogeny




The Laramide belt consists of the deformed and disrupted foreland of the former
Sevier orogeny.
It formed in response to the long-lasting subduction of the Farallon plate
at the expense of the North American cratonic upper plate
during late Cretaceous-Paleogene.
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Sheep Mountain anticline

Deformation is brittle
in the cover and
in the basement

(Bellahsen et al., 2006; Amrouch et al.,2010;
Beaudoin et al., 2012)



The mechanical response of the basement rocks / the overall fold geometry depend on :
P-T conditions during deformation; nature and orientation of pre-deformation basement fabrics;
competence of cover rocks; degree of coupling of folded strata with basement blocks.

Basement can be deformed through : slip on closely spaced fractures; flexural slip on pre-existing foliation
oriented sub-parallel o bedding:; slip on foliation favorably oriented for simple shearing parallel to the fault.

Most outcropping basement rocks are mainly
brittlely deformed at shallow depth (about 2.5 to
5 km) and at a temperature of about 70-120°C)

Laramide cover folding is not related to true
basement « folding » but is instead associated
with distributed damaging of basement rocks by
pervasive fluid-assisted faulting/fracturing
and/or cataclasis ahead of the propagating thrust.

Tri-shear model

(Lacombe and Bellahsen, 2016)




Early Eocene Western North America

(Modified after Jordan and Almendinger, 1986) Modern South America
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deformation occurred in relatively cold
conditions as encountered in a flat-slab
subduction setting. P |

* Precordillera FTB

~32°N,

A similar setting can be found in the actively
deforming Sierras Pampeanas of Argentina.

Crustal faults and biharmonic
folding of the upper plate
lithosphere (crust/mantle)

Crustal décollement
and buckling

How to explain stress transfer and diffuse

shortening in the upper plate far from the
plate boundary ?

Sub-crustal shear

- lithospheric buckling
- fault-propagation folding of the upper
crust driven by mid-crustal décollement,

in addition to local structural and/or possible
physical /compositional weakening.

(Lacombe and Bellahsen, 2016)




In northern Wyoming - Montana, thermochronology and
stratigraphy seemingly support an eastward sequence of thick-
skinned Laramide deformation
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Map showing structural arches and basins
RM—Rattlesnake Mountain anticline; OT—Oregon thrust.

(Tacker and Karlstrom, 2019)
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U-Pb dating of systematic calcite vein sets related to Laramide
layer-parallel shortening and folding

Fracture
set

Mean strike
of fractures

Related
Tectonic events

Set S-1

090°E

Sevier layer-parallel
shortening o

Set S-11

180°E
to 020°E

Formation of the
flexural foreland basin

Set S-111

Set L-I

110°E

Sevier layer-parallel
shortening 72

Laramide layer-parallel
shortening

Set L-11

Set L-111

045°E

180°E
to 160°E

Local curvature-related
extension

Late stage of
fold tightening

Basin and Range
extension

(Beaudoin et al., 2012, 2018)

aprurere -aid

offiuueIe |

\ A

opItuele |

150

r
N

I
=l |

Z(D?P b/l()ﬁpb

BH14 Set L-1
Intercepts at

63.05+2.2 Ma
MSWD =1.6

ZMP b/l(mpb

S
'S

=
o

=
=}

R157 Set S

Intercepts at
66.9+7.5 Ma
MSWD =2.1

12 16
2387 7/206p1,

SMAI Set L-IT
Intercepts at
43.36=1.8 Ma
MSWD = 1.9

(=]




\
| i
I

! - ~ 1 < 4
s \\.-f-.\
f
! A

Neogene
Mio-Pliocenc/ volcanism -
I -~ resetting?

%)
S
|
e
?‘f_ -
aq

veln set

I Laramide inward propagation o Sevier S
* Laramide L-I

« Laramide L-II
exhumation of |
W arches

——i

N
)
|

N
-
|

—_
=
=}
O
1))
@
O
i
)

1 Laramide
—=—

Layer—paralllgl shortening
|
ivef [
! Rapid

Sevier

ﬁ Sevier outward propagation

(Beaudoin et al., 2018, 2019)




The Laramide arches were exhumed first at slow rate then at higher
rate in an overall eastward (cratonward) sequence of deformation,
but a westward sequence of uplift is documented in/around the
Bighorn basin.

This somewhat erratic sequence is probably linked to the
heterogeneous and complex stress transmission and accommodation
of shortening through the crystalline basement that displays
inherited weaknesses and anisotropies.



The external western Alps and the Alpine orogeny
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Basement shortened by distributed underplating.
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IMTERMAL UmITs

*Non reactivation of normal faults
*Basement « folding » closely associated with top-to-the-W
distributed low-angle brittle-ductile Alpine shear zones
(GS facies : 3-4 kb, 330-350°C)

- Efficient crustal thermal weakening during collisional burial Mylonitic deformation related to
high white micas content




Mont Blanc-Aiguilles Rouges section

Basement shortened by localized thrust stacking
and underplating below the internal units

Accretion of a wide cover domain in frontal
parts (Jura and Molasse Basin) with activation of
large basement thrusts.

Mont Blanc
Aiguilles
Rouges

Mont Blanc
Aravis
Bornes




Localization, style of basement-involved deformation and shortening (%) vary along
the strike of the western Alpine arc. Shortening increases across the external zone
from the Qisans section (ECM : 16%) to the Mont Blanc section (ECM : 30-38%).

Significance in terms of crustal rheology :

Along the Mont Blanc section, basement shortening remains localized, leading to
stacking of basement slices, while it is more distributed along the Oisans section.

- the more buried and thermally weakened crust at the latitude of the Mont Blanc
(400°C, Bkb) is more prone to localized shortening at the orogen-scale.



(Bellahsen et al., 2014;
Boutoux et al., 2016; Girault et al., in prep)
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If the crust is thermally weakened
before convergence,
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shortening likely occurs

The weakness
of inherited faults favors
fault reactivation,
hence basement high-angle
thrusting in the foreland

- Laramide
arches
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Early inversion of inherited normal faults / early high angle basement thrusting in the foreland (Zagros, Taiwan)

Basement shortening at the rear then exhumatlon and forelandward propagation
above basement ramps activating allow decollement (Western Alps)

Vercors FTB  Oisans Massif

Coeval thin-skinned and thick-skinned tectonics.
The cover is detached mainly above the low-viscosity Hormuz salt layer
while the basement deforms by both seismogenic faulting and ductile aseismic shearing (Zagros)

Sw Zagros Simply Folded Belt High Zagros

Late basement thrusting : refolding of shallow nappes by high angle thrusts reactivating inherited normal faults (e.g, Jura, Provence)
/out-of-sequence seismogenic basement thrusting

Jura FTB: cover detached over :
Lt ached ove Belledonne Massif Out-of-sequence
Triassic evaporites Chelungpu Thrust

Molasse Basin ~ Bornes FTB )
: Taiwan Hsuehshan

Sequence of
thick-skinned
versus
thin-skinned
tectonics in FTBs

(Lacombe and Bellahsen, 2016)




Take-home message

In basement-involved FTBs, shortening is distributed
throughout the whole crust and is usually lower than
in their thin-skinned counterparts.

This reflects weakness of the underlying lithosphere.

In FTBs resulting from inversion of former proximal passive margins, basement
thrusting occurs in a rather localized way in their inner parts. This requires
structural inheritance and/or hot crustal temperature either inherited from a
recent (pre- orogenic) rifting event or resulting from syn-orogenic underthrusting
and heating.

Development of thick-skinned belts within cratons (eg, Laramide, Sierras
Pampeanas) remains somewhat enigmatic : it occurs in colder conditions and likely
requires specific boundary conditions (strong interplate coupling, such as provided
by flat-slab subduction) ensuring efficient transmission of stresses
(crustal/lithospheric stress guide) and far propagation of deformation in the
foreland by crustal/lithospheric buckling or deep crustal decollement, in addition to
local structural and/or possible physical/compositional weakening.

Basement-involvement in FTBs raises the question of the way the orogen is
mechanically coupled to the foreland and how orogenic stresses are transmitted
through the heterogeneous basement of the foreland/plate interior.
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