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Defining the structural style of fold-and-thrust belts and understanding the
controlling factors are necessary steps tfoward prediction of their long-term
and short-term dynamics,
including seismic hazard, and to assess their potential in terms of hydrocarbon
exploration.
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(Pfiffner, 2017)

Thin-skinned style

Thick-skinned style

In thick-skinned (i.e., basement-involved) FTBs, shortening involves a significant
part of the crust above a deep ductile detachment (z thin-skinned)

Orogenic forelands may have a complex, polyphase evolution, with implication of
different structural styles



A key process by which basement becomes involved is the inversion of
pre-existing extensional faults

Reactivation/inversion of basement faults widespreadly occurs during
orogenic evolution of collided passive margins and this process is known
to exert a strong control on the evolution of orogens

Basement fault reactivation may induce :

-localization of thrusts and folds in the developing shallow thrust wedge:
-inversion of normal faults and development of crystalline thrust sheets;
- out-of-sequence thrusting and refolding of shallow nappes:

- development of accommodation structures such as lateral ramps;

- development of basement uplifts.
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Change from thin-skinned to thick-skinned

though time :
the Jura
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Thin-skinned tectonics in the Jura :
a rather short-lived event : 14-10Ma = 4-3Ma

Permian + Carboniferous
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Répartition des évaporites du Trias sous le Jura
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Comportement mécanique des évaporites du Trias
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(Philippe, 1995)
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(Ustaszewski and Schmid, 2006)
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Fig. 3 U ninterpreted and interpreted part of migrated section C3. P, Top Permian; M, Muschelkalk (Triassic); A, Top AalenianlFig. 2 U ninterpreted and interpreted part of migrated seismic section C2. P, Top Permian; M, Muschdkalk (Triassic); A, Top

(Jurassic); O, G rande Oolithe (Jurassic); J, Top Jurassic; R, R upelian. Zero reference is at 350 m above sea-level. Also shown arc|lA alenian (Jurassic); O, G rande Oolithe (Jurassic); J, Top Jurassic; R, Rupelian. Zero reference is at 350 m above sea-level. Also

(1) the ages of the near-surface sediments that suggest thrusting, (2) the surface elevations, (3) thelocations of the F errette and L eflshown are (1) the ages of the near-surface sediments that suagest thrusting, (2) the surface elevations, (3) the locations of the
laserberg Jura anticlines, and (4) an enlargement of the main faulted area. For location, see Fig. 1. Ferrette and Le G laserberg Jura anticlines, and (4) an enlargement of the main faulted area. F or location, see Fig. 1.

(Rotstein and Schaming, 2004)
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(Lacombe and Mouthereau, 2002)
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Cenozoic deposits ~ [_] Mesozoic cover Permo-Carboniferous grabens
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Superimposed thin-skinned and thick-skinned

tectonic styles :
the Zagros




Zagros : Neogene/ongoing collision
between Arabia and Central Iran
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Analysis of topography
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ductile thickening of salt
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Sedimentary Shallow brittle-ductile wedge model

rocks Brittle
V=0.7 cm/yr (hydrostatic Byerlee's law)

Analytical
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Lateral variations of structural style :

Talwan
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teady critical wegde model for Taiwan

Critically tapered wegde
(with thin-skinned approximation)

Eurasian sediments are scraped off

and deformed into the Taiwan orogen Rigid backstop

Sea level /

Undeformed lithosphere
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Suppe, 1981
Barr and Dahlen, 1990
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Thin-skinned hypothesis

Large shortening
of the sedimentary cover
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2 very different visions of the structural style in northern Taiwan
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2 very different visions of the structural style in central Taiwan
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The Chichi earthquake :
initiation of a thrust ramp dipping

30° at 11-12 km which connects to

the Chelungpu thrust (an
inherited normal fault)
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2010 March 4, Mw 6.3 Jia-Shian earthquake

(Rau et al, 2013)
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ML 6.2 and ML 6.5 2013 Nantou earthquakes
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The earthquakes occur on essentially the same 30° dipping
(Brown et al., 2012; fault plane ramping up from ~20 km depth near a cluster of
Chuang et al, 2013) 1999 Chi-Chi earthquake aftershocks to the shallow
detachment and the Chi-Chi fault plane.
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The degree of basement involvement vs thin-skinned deformation
increases as the lithosphere weakens (rheology of the lower crust)

(Mouthereau and Petit, 2003)



Thick-skinned tectonic style :

the Laramide belt
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anticline from Hennier and Spang, 1983. Bedding dips and Formation
contacts are constrained by surface mapping and geologic markers from
exploration wells. Hennier and Spang postulate a relatively undeformed
basement with multiple thrust planes in an overall wedge shaped
geometry to generate folding in the overlying sediments.

SW-NE trending cross-section through Sheep Mountain
anticline from Forster et al., 1996. Bedding dips and Formation are
constrained by surface mapping and geologic markers from exploration
wells. A wedge shaped fault zone is hypothesized as the mechanism by
which overlying strata fold.

SHBEP MOUNTAIN ANTICLINE
)

Tennluw
Madison
Big Horm

| TRANVSERSE CROSS SRCTION
SKEEP MOUNTAIN ANTICLINE

T32.33N = R9IW
Big Horn Basin, Wyoming

a SW-NE trending cross-section through Sheep Mountain
anticline from Brown, 1984. Geological constraints are not given, but are
most likely surface dips and formation markers from wells. Brown
proposes substantial basement folding and a wedge shaped fault zone
beneath the forelimb of Sheep Mountain.

- SW-NE trending cross-section through Sheep Mountain anticline from Stanton
and Erslev, 2002. Geological constraints are surface dips, formation markers from wells,
and three 2D seismic profiles. Stanton and Erslev propose a moderately folded basement.
Their kinematic modeling suggests that the Rio thrust fault slipped after slip along the fault
beneath Sheep Mountain Anticline had already uplifted the fold.
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B Elk Basin anticline, a mature thrust fold. A: Time-migrated, interpreted seismic profile (600%
dynamite, 1969; modified from Weitzel, 1985). TWT is two-way traveltime. B: Structural cross section
(see Fig. 15 C) showing well control, common Paleozoic oil pool (diagonally lined with oil-water
contact (O.W.C.), a fault-limited chord (FLC) at the base of the Dakota (Kd) horizon, and values for
the various angles (modified from Stone, 1983a). S.L. is sea level.



The mechanical response of the
basement rocks and the overall fold
geometry are highly dependent on :
-P and T conditions during
deformation

-nature and orientation of the pre-
deformation fabric of the basement
rocks

-competence of the cover rocks
-degree of coupling of folded strata
with basement blocks.

No scale

Basement can be deformed
through :

\ ‘ -slip on sets of closely spaced

c | Nosoe N ‘ fractures

: ‘ -flexural slip on pre-existing
foliation oriented sub-parallel to
bedding

-axial surface-parallel slip on
foliation favourably oriented for
simple shearing parallel to the
master fault

-pervasive cataclasis.

"M thruse "Back theust
trishear zone™ o trishear 200"

Alternatively, the curved attitude
of the basement-cover interface
may only mimic true basement
folding. Several mechanisms may
account for such folding of cover
rocks without folding of basement
rocks, such as basement fault zones
containing wedges of cataclastic
material.

(Lacombe and Bellahsen, Geological Magazine,2016)
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Crustal faults and biharmaonic
folding of the upper plate
lithosphers (crust/mantle)

Crustal buckling and
detachment

sub-crustal shear

(Lacombe and Bellahsen, 2016)




Along-strike variations of basement-involved shortening :

the Western Alps




Qisans

Oligocene : basement was shortened in a distributed
way by accretion and thrust stacking below the
wedge (distributed underplating) without wedge
widening

Miocene : deformation localized on the frontal ramp
that activated the Vercors shallow decollement
(frontal accretion hence orogenic wedge widening).

d) Northern Grandes Rousses (Chartreuse-Grandes Rousses section)
NW =g B

Emparis
Grandes Rousses

Belledonne

(Bellahsen et al., 2014)



a) Grandes Rousses-Northeastern Oisans (Vercors-Oisans section) [NTERNAL UNITS

w

(Lacombe and Bellahsen, 2016)




Mont Blanc-Aiguilles Rouges :

Oligo-Miocene : basement shortened by
underplating below the internal units

Miocene -early Pliocene : basement units were T
still underplated (lower Aiguilles Rouges) while | '

a very wide cover domain was accreted in
frontal parts (e.g., Jura and Molasse Basin)
with the activation of large basement thrusts.

Mont Blanc
Aiguilles

Rouges
T s

Internal
Ny units

Mont Blanc

Aravis

Bornes

Oligo-Miocens
C) Cenmal Bolledonne (Caarmeuse-Bellodoans section) [:] (fiysch/molasic)

NW - - Eocens («Ulma-
P Dnrph_:. imoiss flysch)

(Bellahsen et al., 2014)




Localization and style of basement-involved deformation varies along the
strike of the western Alpine arc.

Both the amount of shortening (km) and shortening (%) across the entire external zone increase
from the Oisans section to the Mont Blanc section.

The increase of the amount of shortening is most likely due to a wider inherited Mesozoic basin in
the North (Ultra-Helvetic/Valaisan).

The increase of the shortening probably has a rheological explanation. Along the Mont Blanc section,
basement shortening remains localized, leading to stacking of basement slices. while it is distributed
far toward the foreland along the Oisans section; this can be related to the rheology of the crust
during collision, the more buried and thermally weakened crust at the latitude of the Mont Blanc
(400°C, 5kb) being more prone to localized shortening at the orogen-scale.

Mont Blanc

(Bellahsen et al., 2014)




Seqguence of deformation

IN fold-and-thrust belts




Early inversion of inherited normal faults / early high angle basement thrusting in the foreland (Zagros, Taiwan)

Basement shortening at the rear then exhumation and forelandward propagation
above basement ramps activating cover shallow decollement (Western Alps)

Vercors FTB  Oisans Massif

Moho

Coeval thin-skinned and thick-skinned tectonics.
The cover is detached mainly above the low-viscosity Hormuz salt layer
while the basement deforms by both seismogenic faulting and ductile aseismic shearing (Zagros)

Sw Zagros Simply Folded Belt High Zagros

Late basement thrusting : refolding of shallow nappes by high angle thrusts reactivating inherited normal faults (e.g, Jura, Provence)
/out-of-sequence seismogenic basement thrusting

Jura FTB: cover detached over :
Lt ached ove Belledonne Massif Out-of-sequence
Triassic evaporites Chelungpu Thrust

Molasse Basin ~ Bornes FTB 5 )
— Taiwan Hsuehshan

Basement-involved shortening occurring forelandward after thin-skinned tectonics :
Laramide uplifts / Sevier FTB and Sierras Pampeanas / Pre-Cordillera FTB of Argentina

Laramide uplifts / Sierras Pampeanas Sevier FTB / Pre-Cordillera FTB

Sequence of
thick-skinned

versus
thin-skinned

tectonics in
FTBs

(Lacombe and Bellahsen, 2016)




Some first-order rheological controls

of the structure of fold-and-thrust belts
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Correlation between spatial variations of the flexural rigidity of the lithosphere and the
hature and amount of foreland deformation has been suggested for the Andes FTB and
Taiwan.

Regions with low Te correlate with thick-skinned deformation whereas regions with high
Te correlate with thin-skinned deformation : a strong lithosphere is less easily deformed
so that shortening is localized in a narrow zone at shallow depth, while a weaker
lithosphere enables crust-mantle decoupling and shortening of the whole crust.

The local increase of plate coupling and inhomogeneities in a prefractured margin as in
Taiwan can affect the rigidity of the layered continental lithosphere, supporting a
mechanical relationship between its strength and the structural style.



Differential stretching of the lithosphere modifies its rheological properties
which will subsequently control deformation style during collision.
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(Reston and Manatschal, 2011; Cloetingth et al., 2005)

As the crust thins and cools
during progressive rifting, the
reduction in overburden
pressure and femperature
makes the rocks which
originally deformed by plastic
creep gradually become more
prone to brittle failure.

The result is that the initial
weak zones in the middle crust
and deep crust disappear and
that the entire crust becomes
brittle.

The important consequences
of the progressive
embrittlement of originally
ductile rocks during
lithospheric extension are (1)
that lateral flow or
displacement of particular
layers within the crust should
become progressively more
difficult as rifting proceeds,
and (2) that the upper crust
becomes coupled to the
mantle.




Passive margins are key players in the collisional processes as the arrival of
their proximal, poorly thinned parts into the subduction zone mark the
onset of collision.

For thick-skinned FTBs that developed from former passive margins, the
occurrence of weak mechanical layers within the proximal margin
lithosphere (the middle and most of the lower crust are expectedly ductile)
may explain that contractional deformation be distributed within most of
the crust, giving rise to basement- involved tectonic style.

In contrast, because these weak crustal levels are usually lacking in distal
parts of the margins as a result of thinning, these stronger lithospheric
domains are more prone to localized deformation in a continental subduction
style.
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If the crust is buried
and thermally weakened
during convergence, pre-existing faults
are not significantly weaker
than the crust, so basement-involved
shortening may occur without
reactivation of inherited faults

(Lacombe and Bellahsen, 2016)
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Thermotectonic age of continents
= age of the last tectono-magmatic event
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Mouthereau et al. (2013)
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Conclusions

1. There are increasing lines of evidence of basement-involved shortening
in FTBs, even in the ‘archetypal’ thin-skinned belts. This basement
involvement is often associated with basement inversion tectonics.

2. The pre-orogenic deformation of the basement may control the
geometry, kinematics and mechanics of FTBs, either at the scale of the
whole belt (e.g., belt curvature, segmentation and along-strike variations
of structural styles, sequence of deformation, localization of contractional
deformation and % of shortening) or at the scale of tectonic units
(reactivation of inherited basement faults, basement-cored folding).

In some cases however, inherited basement (normal) faults are not
reactivated whereas newly-formed compressional shear zones develop,
which brings into question the bulk rheology of the crust vs the rheology
of preexisting fault zones available for reactivation.



3. In basement-involved, thick-skinned FTBs, shortening is distributed
throughout thewhole crust and is usually lower than in their thin-skinned
counterparts, which likely requires/reflects a specific thermo-mechanical
behavior of the underlying lithosphere (e.g, hot and young, hence weak). In
FTBs resulting from inversion of former proximal passive margins,
basement thrusting that occurs in a rather localized way in their inner
parts requires structural inheritance and/or a hot crustal temperature
either inherited from a recent (pre- orogenic) rifting event or resulting
from syn-orogenic underthrusting and heating.

4. Basement-involvement in FTBs raises the question of the way the
orogen is mechanically coupled to the foreland and how orogenic stresses
are transmitted through the heterogeneous basement of the
foreland/plate interior. Development of thick-skinned belts within cratons
remains somewhat enigmatic and likely requires specific boundary
conditions (strong interplate coupling, such as provided by flat-slab
subduction)  ensuring  efficient  transmission  of  stresses
(crustal/lithospheric stress guide) and propagation of deformation in the
pro- and retro-foreland by crustal/lithospheric buckling or deep crustal
decollement, in addition tfo local structural and/or possible
physical/compositional weakening.
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Abstract — Defining the structural style of fold—thrust belts and understanding the controlling factors
are necessary steps towards prediction of their long-term and short-term dynamics, including seismic
hazard, and to assess their potential in terms of hydrocarbon exploration. While the thin-skinned
structural style has long been a fashionable view for outer parts of orogens worldwide, a wealth of
new geological and geophysical studies has pointed out that a description in terms of thick-skinned
deformation is, in many cases. more appropriate. This paper aims at providing a review of what we
know about basement-involved shortening in foreland fold-thrust belts on the basis of the examination
of selected Cenozoic orogens. After describing how structural interpretations of fold—thrust belts have
evolved through time, this paper addresses how and the extent to which basement tectonics influence
their geometry and their kinematics, and emphasizes the key control exerted by lithosphere rheology,
including structural and thermal inheritance, and local/regional boundary conditions on the occurrence
of thick-skinned tectonics in the outer parts of orogens.

Keywords: thick-skinned tectonics, basement-involved shortening, inversion tectonics, thermo-
structural inheritance, crust mechanics, lithosphere rheology.







