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Why to characterize stresses in the crust ?
The motivation arises :

from applied geological purposes, such as geological
hazards, engineering activities and resource exploration;
and
from fundamental geological purposes, such as

understanding the mechanical behaviour of geological
materials and deciphering various tectonic mechanisms,
from those related to plate motions at a large scale to

those causing jointing and faulting or even
microstructures at a smaller scale.

Despite an increasing humber of in situ stress
measurements, magnitudes of crustal stresses remain
poorly constrained...




Calcite twinning paleopiezometry



Twinning of minerals depends on the magnitude of the shear stress
which has been applied to them.
One can make use of this property to evaluate the magnitudes of
stresses which have been supported by a rock during its history.

An access to paleostress magnitudes in the
upper crust : Calcite twinning paleopiezometry

In the upper crust, brittle deformation of carbonate rocks is accompanied
by pressure-solution, porosity reduction and crystalline deformation.

At low T (0-300°) calcite plasticity corresponds to the prevailance
of e-twinning



Geometry and significance of calcite twins




A twin is a polycristalline association formed by the WhGT'S a twin ?
juxtaposition of fwo homogeneous parts, or more, of a ;

single crystalline species, oriented one with respect each
other following well-specified laws.

The composition plane along which twinning occurs is a
plane of high atomic density that separates the twinned
portion of the crystal from the host (untwinned) part.
The twin plane is the plane that belongs to both portions
. it is the equivalent of the shear plane if one considers
that a twin lamella results from simple shearing of the
crystal.

The twinning direction is the « gliding » direction : this
is the line that connects an atom before twinning to the
same atom after twinning; it belongs to the twin plane.

The orientation of the twinned portion of the crystal
can be deduced from the orientation of the host crystal
by a rotation that accounts for the geometry of the
lattice. However, this rotation is virtual and by no means
corresponds to the physical mechanism of twinning.




Types of twinning

» Twins may be classified on the basis of their

physical properties

* There are two basic types of twin

= Contact twins
= Penetration twins

Origin of twinning

» Twinning can originate in 3 different ways
= Growth twins

= Transformation twins

= Deformation twins



Calcite twinning

* Most common twin laws that
are observed in calcite
crystals are {0001} and the
rhombohedron {01-12}

Both are contact twins, but
the {01-12} twins can also
occur as polysynthetic twins
that result from
deformation




Twinning ~ simple shearing in a particular sense and direction
along e-planes {01-12}

Twin lamella

Host crystal

. . Twinning sense
Deformation-induced

polysynthetic twins
on e {01-12}

Twin lamella /{
\ /C \; “Twinning
Twin plane direction
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Calcite twins as
low T thermometer
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type 1 type II type III type 1V
Geometry -thin ~thick (>>1pm) -curved twins -thick, patchy
-straight -straight -twins in twins -sutured boundaries
Description’ -rational -slightly lenseshaped |-irrational -trails of tiny grains
-rational -completely twinned |-irrational
Interpretations |[-little deformation -considerable def. -large deformation. |-large deformation
<little cover -completely twinned |-intracrystalline -recrystallization
-low temperature grains are possibl def. hani (grain boundary
e.g. (r-& f-glide) migration)
-(post-metamorphic) |-syn- or post- -syn-metamorphic |-pre- or syn-

-(late tectonic) metamorphic deformation. metamorphic
Temperature < 200°C 150-300°C > 200°C >250°C

Mean twin intensity (#/mm)

3
Mean twin width (microns)

Increasing temperature

Twin Width

(Burkhard, 1993; Ferrill, 1998;
Ferrill et al., 2004)

Twin Strain



Stress analysis of calcite twinning :
The ‘historical’ techniques



Jamison and Spang (1976) :
determination of differential stress magnitudes

if ta is known, AG
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In a sample with no preferred
crystallographic orientation, the
percentages of grains twinned on O, 1, 2
ou 3 twin planes are functions of the
applied differential stress (c1-63) value.
Experimentally calibrated
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Limitations :
- uniaxial stress
- critical resolved shear stress for twinning
= constant ta = 10 MPa
- Yakes into account neither grain size nor
mutual compatibility of twin systems



Rowe and Rutter (1990) : determination of differential stress magnitudes

Twin density, D
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Tosumup :

None of these techniques allows to relate differential stresses
to principal stress orientations and stress regimes.

- significance of ‘bulk’ maximum differential
stresses in case of polyphase tectonics ?

Moreover,
technigues are commonly used separately
without care of their specific limitations



The Calcite Stress Inversion Technique, CSIT /CSIT-2
(Etchecopar, 1984; Parlangeau, 2018)



Determination of the reduced stress tensor

The inversion process is very similar
to that used for fault-slip data :
twin gliding along the
twinning direction within the twin
plane is geometrically is comparable
to slip along a slickenside lineation
within a fault plane.

Rl el But the inversion process takes into

plan maclé si TS =Ta

| Taisewiidemachte  pansormackesTs<Ta | account both twinned planes
(resolved shear stress > CRSS)
Inversion of calcite twin data [_!» Reduced stress tensor ] w
(4 parameters) untwinned planes
Orientation of principal stresses and stress ratio (re_SOI\/e_d shear Str?SS < CRSS)’
(c2-c3) a major difference with inversion of

D= _0'1 — _,l

fault-slip data

+ dimensionless differential stress magnitudes




Consistent twinned planes
Inconsistent twinned planes
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Inconsistent untwinned planes
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Internal twinning threshold
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Resolved shear stress
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Rapport ® Fonction
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The strength of a sliding system (twinning or sliding ss) is conventionally
expressed by a Critical Resolved Shear Stress (CRSS). It corresponds fo the
resolved shear stress along the sliding plane along the sliding direction that
must be reached to induce a significant plastic (permanent) deformation, i.e.,
to induce motion of a number of dislocations, so that sliding becomes
macroscopically observable independently of the orientation of the deformed
grain. Such a behavior is commonly associated with a critical point on the
stress-strain curve for a monocrystal.

The value of the CRSS is given by : . s corresponds to the
applied stress at the critical point; S is the Schmid's factor, such as S = cos o
x cos B, with a the angle between compression and the normal to the twin plane
and B the angle between compression and the twin vector. The RSS along the
twin vector is maximum when o et B are equal to 45°, S varying between O and
0,5 depending on crystal orientation.

The sources of stress concentrations like grain-scale heterogeneities being
very numerous in natural crystals (dislocations, fractures, indenters,
preexisting twins), the twinning threshold (= CRSS) likely reflects the stress
required to propagate rather than to nucleate twins.



Critical shear stress value
for twinning (MPa)

A

Critical shear stress value
151 calculated at 3% strain
Turner et al., 1965

Critical shear stress value
calculated at yield
Turner et al., 1954
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The CRSS is ~ independent on T°C but depends on grain size and internal strain (hardening)




Agrégats cristallins Monocristaux
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Inversion of calcite twin data [? Reduced stress tensor
(4 parameters)

Orientation of principal stresses and stress ratio
02—03
D =
O1—03
+ dimensionless differential stress

(51 _53)/78-

‘constant’ CRSS ta
for a set of calcite grains
of homogeneous size

Deviatoric stress tensor (5 parameters)
0,+0,+0
TDZT—( 1 32 3j|

(01 - 03) (0'2 — 03

Orientation of principal stresses and differential stress magnitudes‘




Or

O.
o1
Pi = (0] +0,+03) /3

Faults -- Reduced stress
tensor

Calcite twins --
Deviatoric stress tensor

03D O2D




Differential stress magnitudes
in fold-and-thrust belts and orogenic forelands
Some examples



Zagros : Neogene/ongoing collision between Arabia and Central Iran
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Neogene compressional trends Neogene compressional trends £ hquake focal mechani
from fault slip data £rom calcite twin data rom earthquake focal mechanisms
(Lacombe et al., 2006) (Lacombe et al., 2007) (Lacombe et al., 2006) and GPS shortening

rates (Walpersdorf et al., 2006)



High Iranian

Simply Folded Belt Zagros Belt Plateau (Lacombe et al.,
»< » Geology,

2007)
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Sismically active foreland fold belt

The relative homogeneity of differential stresses agrees with the homogeneously
distributed shortening across the SFB, where no deformation gradient toward the
backstop is observed in contrast to classical fold-thrust wedges

Both pre- and post-folding differential stresses are low --> folding likely occurred at
low stresses; this favours pure-shear deformation and buckling of sedimentary rocks
rather than brittle tectonic wedging.




Arabia-Eurasia collisional stresses were consistently
recorded by calcite twinning in the detached cover of
the Zagros (Fars).

Calcite twinning paleopiezometry reveals an unexpected
low level and first-order homogeneity of differential
stresses across the SFB, which supports an overall
mechanism of buckling of the cover sequence.



~23°

-22°

—25°N

= After Lacombe
etal, 1993; Rocher

etal, 1996

= After Linand Lee

(1997)
After Rocher
(1999)

After Hung, 1994,
Hung and Kuo, 1999

Martini's Chiayi-Hsinying .3
A zones area, Kaohsiung area
& Taigan s
Bl Liushuang Liushuang ]
> T Lingkou
% " Erchungchi Erchungchi Cong.
g |mlz : =
g |5l 2 Kanhsialiao 35
@ <| o M B
<S> NS HKS BRS
1 z -_—
Liuchungchi L Guh:gkeng
| NN16-18
Yunshuichi
) NN15 LLLL
g | m erua @ @ |l Cutingkeng |-Nanshibiun_
8 5
2= i s Kaitzeliao
Niaotsui
NN12
[+}
] % E Chingiun Mucha Wushan
L NN11

Fine-grained siliciclastic sediments
\

Stratigraphy of the reef limestones of the southwestern Taiwan.

Locally developed coral-algal reef

(Lacombe, 2001)

(Gong

etal., 1995)



] Holocene

EZ] Plio-Pleistocene
Miocene

E7] Pre-Miocene

5 Neogene reef
limestones

1. Kungtien; 2 : Chentoushan;
3. Niushan; 4. Takangshan;

5. Hsiaokangshan; 6. Panpingshan;

7. Kaohsiung; 8. Fengshan

Kungtien limestone
(projected) Chunglun anticline

Type | tensor : prefolding Type |l tensor : postfolding Type |ll tensor : synfolding
NW-SE compression NW-SE compression NW-SE compression

e

limest anhcﬁne
Mam NW-SE compression  Minor late ENE-WSW compression B

(Lacombe, 2001)




Shear stress
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« Collision » stage

Thick-skinned
tectonics

« Accretionary
wedge » stage
Thin-skinned

tectonics

\

After removing the
effect of lateral
variations of
burial...

Differential
stress
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hick-skinned

After removing the effect of lateral _
High (c1-03)

variations of burial...

Kungtien limestone
(projected) Chunglun anticline

Type | tensor : prefolding Type |l tensor : postfolding Type |ll tensor : synfolding
NW-SE compression NW-SE compression NW-SE compression

locen

% glci)o-Plei:tocene ’ w Mam NW-SE compression  Minor late ENE-WSW compression
Miocene

E7] Pre-Miocene

5 Neogene reef
limestones

1. Kungtien; 2 : Chentoushan;

3. Niushan; 4. Takangshan;

5. Hsiaokangshan; 6. Panpingshan;
7. Kaohsiung; 8. Fengshan

(Lacombe, 2001)




Calcite twinning analyses in Taiwan Foothilld document
possible along-strike changes in differential stress
magnitudes recorded by cover rocks
depending on the tectonic style.



Calcite twinning analyses in orogenic foreland possibly
document a decrease of differential stress magnitudes
with increasing distance to the belt

(Hnat et al., 2013;
Van der Pluijm et al., 1997)

a) Ouachita belt
90"

w0 75

USA 0r-03 (MPa) A

I -

4
i

Atlantic

Ocean

2 1

il

A =
|

A — -

— - =
: A
A Ap ﬂﬁ% A\E]éu o
Fold-Thrust Belt
200

300 100
distance (km)
Fold-Thrust Belt

WNW

10 km

=100

(Lacombe et al., 2007)

b) Zagros belt
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2005)
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Miocene Pal/Mesoz/Paleocene Hormuz salt

Cambrian

... and also 1n the north Pyrenean foreland

(Lacombe et al., 1996; Rocher et al., 2000)...
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Sheep Mountain anticline




Early-folding and late-folding paleo-differential stress magnitudes
from calcite twinning paleopiezometry

Sheep Mountain anticline

Early-folding

I . Late-folding

Early-folding

Late-folding

1Ty nnrrrgrynnrrnd
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3 &
+Precambrian +
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(Amrouch et al.,
Tectonics, 2010)




Minimum principal stress

Stress perturbations in the sedimentary -
cover at the tip of the underlying basement [
fault starting fo move during Laramide stress il & 7
build-up
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\ |
 \
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(Bellahsen et al., GRL, 2006;
Amrouch et al.,
Tectonics, 2010)




Determination of principal stress magnitudes,
(i.e., the complete stress tensor)



Quantifying principal stress magnitudes

Finding for each deformation step, using a simple Mohr construction, the values of o1,
o2 and o3 required for consistency between differential stresses estimated from
calcite twinning, frictional sliding along preexisting planes (i.e., Byerlee's law) and newly
formed faulting/fracturing.

T
(Shear stress)

A FAILURE ENVELOPPE

(Fresh faulting) ‘

~
The Mohr circle should be FRICTION CURVE

tangent to the failure enveloppe (Sliding on preexisting planes)
for newly-formed fault planes

G3\ O2 01
Reactivated planes ( <‘ o1 03>

> G, (Normal stress)

should lie above K
Maximum differential stress

the friction curve
computed from inversion of

The vertical principal calcite twin data

stress should correspond
(Lacombe and Laurent, 1992; 5 thavolicabioad

Lacombe, 2001)
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Stylolite roughness paleopiezometry



Principle of inversion of stylolite roughness
for stress (SRIT)



Thermodynamics and kinetics of the growth of
a stylolite :

Once dissolution starts, there

between:

IS a competition

- two stabilizing (smoothening) forces, long-range elastic
forces and local surface tension, that tend to reduce
the Helmholtz free energy of the solid > they flatten
the surface by preferentially dissolving areas of local
roughness ;

- a destabilizing (roughening) force due to pinning
particles on the stylolitic surface, that resists
dissolution in specific locations, locally increasing the
free energy and producing peaks and teeth.

calcaire

résidu

calcaire



scaling of the roughness

Fourier Power Spectrum
P(k) _ kﬂ—ﬂh

if the signal is self-affine

/ \f\jwv

binnesd data

. ;:'r;g.il%;;au. —
- — miadellad fit
h-o' 5 % prossover = 1,480 mm

small wavelength

. surface energy
large wavelength *\

elastic energy :

. h=1
.

cross-over .

10’ 10°
k(mm-')

- two growth regimes (elastic / surface energy dominated regimes), each of those
being characterized by a roughness exponent (Hurst exponent) and separated by a
crossover length (Lc) that describes the scale at which the switch between regimes

of control occurs.




(Schmittbuhl et al., 2004)

L. = vE
‘o BGmGd

y : surface energy at the solid-fluid interface, E : Young modulus,
B =v(12v)/n : dimensionless number with v : Poisson ratio,
om : mean stress, od : differential stress.

Considering an isotropic stress in the stylolite plane
(sedimentary/bedding-parallel stylolites - BPS) :

—
G,> O0y_O L. = i Oy = vE
Y H= "“h C 2 \Z
OH=Cn :(1%) Ov 2 1 (1 Bao-fz i \ LCB(X
i @=3 (13) (1_—vv) Op SO (ﬁ) Oy

This allows to predict the magnitudes of the normal-to-the-plane stress
and of the two in-plane stresses



In contrast, a tectonic stylolite records a stress anisotropy within the stylolite plane
(02 different from o03) : depending on the orientation of the stylolite the crossover
length Lc reflects the differential stress 01-02, 01-03 or a value in between.

If Lc is determined from a 2-D signal, then it depends on the orientation of the cut
through the stylolite with respect to 02 and a3 (ol horizontal and normal to stylolite).

maximum Le¢

The relationship between Lc and the angle © is a periodic function, with minimum and
maximum Lc separated by 90° - roughness inversion on 2-D scans of three surfaces
normal to the stylolite yields 3 Lc and the 3 corresponding angles 6 between the cuts
and the vertical direction.

The minimum and the maximum Lc correspond to (01-03) and (01-02). If © associated
with Lcmin is close to the vertical plane (6=0°), then 02 is horizontal (R regime);
otherwise, if © associated with Lcmax is close to 0°, then a3 is horizontal (SS regime).



To summarize, Stylolite Roughness Inversion
Technique (SRIT) works for :
« Stress direction

* Depth of sedimentary stylolites (from
shallow to 4000m)

« Tectonic stylolites (heeds 3D and
assumption of depth)

Sedimentary stylolites




Application of SRIT to paleodepth reconstructions
in poorly tectonized sedimentary basins
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(Beaudoin et al.,
Geological Society of
America Bulletin, 2019)
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Max burial depth (m)
from consistent stylolites
Average FPS and AWC

Consistency between maximum
burial depth from stylolites and results
of basin modelling in the Paris basin

(Beaudoin et al.,
Geological Society of America Bulletin, 2019)
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A powerful toolbox : combining
calcite twinning

and stylolite roughness
paleopiezometry




Combining stylolite roughness and calcite twinning
paleopiezometry reveals the complexity
of progressive stress patterns during folding
(Monte Nero anticline, Apennines, Italy

Beaudoin
et al.,
Tectonics,
2016
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Paleo-differential stress vs paleodepth




On the difficulty of establishing
a paleostress/ paleodepth relationship

In drill holes, contemporary stresses are determined directly at a
given depth / in a narrow depth interval.

In contrast, paleopiezometers are generally sampled and analysed
after they have reached the surface, i.e., after exhumation from an
unknown depth z, and establishing a Ac vs z relationship for
paleostresses requires independent determination of Ac and z.

In FTBs, paleo-z estimates are usually derived from stratigraphic/
sedimentological studies or from thermometry coupled with
assumption on paleothermal gradient

In addition, in case of polyphase tectonism, deciphering the Ac vs z
evolution requires to unambiguously relate Ac to both z and to a
specific tectonic event.



For a favourably oriented pre-existing cohesionless fault plane,
the condition of reactivation can be written as follows :

(01 =Py) /(73 —Py) = [(w* + 1) +u]]

o — a3 =2gz(A— 1)(1 — [(* + 1) +u]*)

- 0.5
14+ [(p” +1) " +p7)
Strike-slip stress regime
and Reverse stress regime

oy — a3 =pgz (i — 1)(1— [(u® + 1) +u]?)
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(Lacombe, 2007)
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At the present-day state of our knowledge and with the
available dataset, most paleostress data support a first-
order long-term frictional behaviour of the upper
continental crust.

The crustal strength down to the
brittle-ductile transition is generally controlled by
frictional sliding on well-oriented pre-existing faults
with frictional coefficients of 0.6-0.9 under hydrostatic
fluid pressure (frictional stress equilibrium).

Some ductile mechanisms may, however, relieve stress
and keep stress level beyond the frictional yield, as for
instance in the detached cover of forelands.



Application to paleodepth reconstruction
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Comparison of paleo differential stress
magnitudes with contemporary stress
magnitudes and frictional sliding criteria
in the continental crust: Mechanical implications
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Application of Coulomb faulting theory with laboratory-derived

coefficients of friction (e.g., Byerlee, 1978) allows prediction of

critical stress levels in reverse, strike-slip, and normal faulting
environments as a function of depth and pore pressure.

The in situ stress data compiled by Townend and Zoback (2000)
and plotted with the theoretical curves for a critically stressed
crust under hydrostatic conditions show consistency with Coulomb
frictional-failure theory incorporating laboratory-derived
frictional coefficients, p, of 0.6-1.0 and hydrostatic fluid
pressure for a strike-slip stress regime.

The crust's brittle strength is quite high (hundreds of MPa) under
conditions of hydrostatic pore pressure.

The stress/depth gradient depends explicitly on the stress
configuration, i.e., normal, strike-slip or reverse stress regime.



The critically stressed upper continental crust is
therefore able to sustain differential stresses as large
as 150-200 MPaq, so its strength makes it able to
transmit a significant part of orogenic stresses from
the plate boundary across the far foreland



Concepts and techniques underlying determinations of
contemporary stresses and paleostresses are inherently
different, and both types of stress data do not have strictly the
same geological meaning.

Contemporary stresses measured in situ reflect local,
instantaneous ambient crustal stresses, while reconstructed
paleostresses reflect ancient crustal stresses at the particular
time of tectonic deformation, averaged over the duration of a
tectonic event and over a given rock volume.

Although to this respect contemporary stresses and
paleostresses are not directly comparable, their analyses however
rely on the same mechanics, and they constitute complementary
stress data sets.



Combination of paleostress and stress data provides new
constraints on the differential stress gradients with depth, which
are to date still poorly known.

Combining contemporary and paleostress
data allows us to extend our stress/depth database in
various settings, i.e., away horizontally from drill holes, and
vertically by obtaining information on stress magnitudes at depth
more or less continuously down to the brittle-ductile transition.

Finally, such a combination of stress data therefore brings useful
information on the strength and mechanical behaviour of the
upper continental crust over times scales of several tens of Ma,

and should be taken into account in future modelling.



Quantification of principal stress magnitudes
and fluid (over)pressures

at Sheep Mountain
and Rattlesnake Mountain anticlines
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Quantifying paleo fluid (over)pressure
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(Beaudoin et al., 2014) Comparison of Ac,, evolution
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Link with structural style

(Beaudoin et al, 2011; Evans and Fischer, 2012)
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Comparison with values of fluid overpressures in sedimentary basins
derived from paleo-pressure reconstructions based on gas composition in hydrocarbon fluid
inclusions or from direct measurements in limestone or shale/sandstone reservoirs.
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Combining paleopiezometers
(e.g., calcite twins / stylolites) :
a powerful toolbox that helps constrain ...

- stress orientations, regional tectonic history
- values of tectonic (paleo)stress magnitudes
-pore fluid (over) pressure through time in reservoir analogues
- fransmission of orogenic stresses to the foreland
- upper crust rheology
- put mechanics into basin/thrust belt kinematic modelling

among others...
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