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The fold-and-thrust belt / foreland system

Orogenic wedge
Foreland basin

Syn-tectonic deposition /
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Internal thickening until critical angle o is reached

1. Basal sliding without internal thickening, then
2. New snow is incorporated in the wedge, o is lowered, then
3. The wedge will deform internally until o is reached again, and so on




Davis et al. (1983)

sea level

for a non-cohesive sub-aerial wedge
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Thrust units

Sedimentary cover
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Shortening is accommodated in the upper part of the crust
above a basal décollement dipping foward the hinterland

Implicit assumption of « thin-skinned » tectonic style

Topographic slope and dip of basal décollement define the
orogenic wedge
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Regioual tectonic map showing serting of the Nankai Trough study arca (box lbeled as Figure 2.




Chevauchements Front de déformation Turbidites

Transgression des
turbidites sur les
sédiments pélagiques
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Conditions de fracturation et état critique

Dans le prisme

Critere de neorupture
(Mohr-Coulomb)

Le prisme est a I’état critique
lorsque le cercle tangente
la droite de néorupture

Base du prisme

Critere de friction
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deformation front

trajectories

Figure 14. Theoretical slip surfaces and rock trajectories in the critically tapered Taiwan wedge, assum-

ing u = 0.85.
Dahlen et Suppe, 1988




A) Etape | Soulévement

Point de singularité

B) Etape 2 flanc pro

pente forte

pente miblc_,,—-—-"""f .

C) Etape 3 vl : pente faible

(Willett et al., 1993)
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EXAMPLES OF CRITICAL DRY SAND WEDGES

1. normal faulung and 2. surface at angle of 3. combined normal and 4. thrust faulting
downsfope llow repose thrust faulting

* horizontal base

5. accretionary wedge fails 6. combined normal and 7. surface at angle
by thrusting thrust faulling of repose
horizontai free surface .‘



Le prisme est translaté
passivement sans
Déformation interne

stable

Prisme Erosion
Sous-critique

Diminution g\\
de la friction basale '

DéfO rmatiOnS COmpreSSIVES ou de la pression de fluide
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A. Frontal Accretion

(Willett et al., 2001)

End-member kinematic models of
orogenic wedge growth.

A) Frontal accretion. Wedge
shortens such that a vertical
column extends vertically and
shortens horizontally.
Vertical component of surface
velocity is relativelyconstant.

B) Underplating.

Wedge does not shorten
horizontally and thus has no
horizontal velocity.
Columns of rock move vertically at
a constant rate in response to
addition of new material at the
base of the wedge.
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Geodynamic and Kinematic setting of the Zagros
fold-and-thrust belt



Arabian

-.-ﬁl--!-_ Platform

The Zagros belt results from the
collision between Arabia and Central
Iran, beginning in (Oligo ?)-Miocene

times and continuing today.

About one third of the 22-25 mm/yr
Arabia-Eurasia convergence
Is currently accommodated in the
Zagros
(Vernant et al., 2004)
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Lithofacies and stratigraphy in the Zagros basin
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Middle Jurassic
c. 170 Ma

Lower Cretaceous
C. 130 Ma

Upper Cretaceocus
c. Th Ma

Eac. fyach
& basalis

Paleoccensa - Eocena
c. 50-45 Ma

(Agard et al., 2005)
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ZAGROS 55Z UDMA ALBORZ
CENTRAL IRAN
SOUTH CASPIAN

Elevation (km)
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Onset of Plateau uplift 22-15Ma
caused by distributed
crustal shortening

ALBORZ SOUTH CASPIAN

T A —

Accretion of Arabian plate :
by duplexing (underplating)
below the MZT

~22 Ma
Shortening of
obducted thrust sheets
and southern SSZ units CENTRALIRAN A1 gorz  SOUTH CASPIAN

ARABIA == ' EURASIA
. Continental crust thinned and intruded
by volcanics during the Eocene

ZAGROS

Underthrusting of
Arabian plate

(Mouthereau , 2011)
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(Authemayou et al., 2006)



W, Along-strike belt _ -
™ stretching Clockwise rotation in the

cover by lateral pinch-out of
Anticlockwise block the Hormuz salt
=, rotation between dextral detachment horlzon

4 Sk slp facta I the (Authemayou et al., 2006)
basement




Geological setting of the Zagros

fold-and-thrust belt
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Plate-forme %%

Arabe
(AR) ¢
T

Upper crust Upper crust Upper crust
Sedimentary series Magmatic rocks Sedimentary series

35 mm/a

Little thickening
below the
Zagros

Upper mantle



Along-strike segmentation is
usually related either to
variations in frictional properties
of the basal décollement
(Cambrian Salts) and/or to the
distribution of pre-orogenic
basins in the Arabian margin

Arabian
plateform

Talbot and Alavi, 1996
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[__] Bakhtyari Fm (Plio-Pleistocene) [__] Gurpi Fm (Upper Cretaceous)

[1 Agha Jari Fm (Mio-Pliocene)
[::] Mishan Fm (Miocene)

Guri Fm (Miocene)
%Razak Fm (Oligocene)
Jahrum Fm (Eocene)

[T ] Mesozoic limestone
[] Paleozoic limestone & sandstone @
- Hormuz evaporites (Precambrian)

:] Arabian basement

Published focal mechanisms,
with centroid depths in Km

Eroded branch point between
Lardogarm Thrust and MZT

(Molinaro et al., 2005)

: Flysch abd ophiolites




g;gﬁif ;Sﬁﬁi"‘;nd further Out-of-sequence thrusts linked to basement
amplification and faulting of the Forelimb thrusts cutting through :2““?_102::!,""0“?& lhetcoverf S"telpﬁ:n lhBe i‘:a of
detachment folds. Part of the detachment  folds  dissipate 2 G .o‘ve F(usélng of flat-lying Bakhtyari
Hormuz salt is evacuated by displacement within Mishan marls conglomerates (Fig.)
diapirs piercing through the cover MZT

-

Rezwar Handun i Lardogarm

Upper Miocene-Lower Pliocene

LATE MIOCENE - PLIOCENE inception of folding based upon Step 1 in the area of the HZF: tilting

Shortening propagates into foreland: magneto-stratigraphy in NW Zagros of the Mishan Fm. (see Figure 6 for ~ Activation of the Baghan Thrust ps 7 T
Hormuz salt migrates into the cores of (Homke et al, 2004) comparision)

the detachment folds
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MIDDLE MIOCENE - LATE MIOCENE Sudden thickening of Hormuz salt
Fault bend folds transfer displacement towards the S could explain the
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Zagros Folded Belt

Imbricate Zone S8Z

100 km -

(Mouthereau et al., 2007;
Lacombe et al., 2006)
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Fluvial and lacustrine & s i Pliocene
Final stage of collision | ¢ vari o Conglomerates Pleistocene
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Shelf Miocene
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Arabia-Eurasia collision

of the flexural foredeep related to

Regressive sequence; progressive infilling
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Dolomites
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. Shales Oligocene
Marls/Continental

External platform/Basin
deposits
in foredeep related to flexure
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| i, | Hormuz evaporites

Miocene foreland sequences :
Thick regressive siliciclastic sequence of the Fars Group




South Coastal Fars Internal Fars Sea level curve Main tectonic events
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Regressive sequence

Conglomerates

Braided fluvial
and lacustrine

Sandstones, shales
Deltaic to Estuarine

& Progressive
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Carbonates
Turbidites
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Miocene foreland sequence : thick regressive siliciclastic sequence
of the Fars Group

Infill of the foreland basin
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Oligocene- lower Miocene

- Major transgression on the Plateau and the northern Zagros : deposition of
miocene flyschs to the north and carbonates to the south.
- No evidence of folding at that time

Mountain N
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Miocene. Fars Group

-Regression and filling of the foreland flexural basin; coarsening-upward
sequence
-Zagros : migration of the basin, strong subsidence, clasts

Mountain N
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Oldest folding event recorded in the Fars - Oligocene

(adapted from Mottiei, 1993)

Migration of the collision
southward

Maximum subsidence in the
Dezful

Initiation of deformation
in the southern Fars (Gulf Coast)

Migration of the collision
southward

Maximum subsidence
parallel fo the MZT - the
flexural basin was formed




Developement of the upper Fars and active folding near the Gulf
Coast
(formation of an intramountain trough)

Migration of the collision
southward
Maximum subsidence

toward a southern trough

(adapted from Mottiei, 1993)

Renewed subsidence in the Dezful
and achievement of the present
structure of the ZSFB

Migration of the deformation front
toward the Arabian shelf

: : : Agha Jari
Maximum subsidence domain Bakhtyari

propagated into the Arabian shelf  JRNERLE
consistently
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(Sepher and Cosgrove, 2005)
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N-S basement faults
underlying the Zagros cover
inherited from
Panafrican orogeny

(Al Laboun, 1986; Beydoun,
1991; Berberian, 1995;
Weijermars, 1998;
Husseini, 2000;

Bahroudi and Talbot, 2003)
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Drainage reorganisation from transverse to axial river network
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(Khadivi et al., 2012)




Distal continental margin
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Deformation in the Zagros (1) : folding
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« buckle folds »

Development of this type of
folds requires a significant
contrast of competence between
the folded strata (elastic or
viscous) and the surrounding
medium (viscous).

In this case, there is a direct
relationship between the
thickness of the competent
strata and the wavelength of
folding

@
#
o
:\
kv,
=
=
@
2

ductile matrix

higher viscosity
E

Influence of layer thickness and viscosity contrast on the wavelength of buckle folds. A, B. There
is a linear relationship between log layer thickness and log buckle wavelength for widely separated layers of
constant viscosity in a ductile matrix of much lower viscosity. C. Buckle folds of different wavelenglh may be
superimposed if the layers are close enough to interfere. D. Buckle folding produced by a number of layers of
different viscosity u,—u, and different thickness in a ductile matrix of much lower viscosity p,. A, C and D are
examples of disharmonic folding (see section 3.6). (After Ramberg, H. (1964) Tectorophysics, 1, 307-41.) E. Buckle
folding of an interface between two thick layers of contrasting viscosity. The cusps point towards the material
of higher viscosity (cf. mullion structure, see section 4.2 and Figure 4.8B).




« buckle folds »
Conditions : « pure shear »
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Mechanical behaviour of evaporites
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Wavelength Lw for viscous buckling

Initial
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competent
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Dahlstrom (1969)

Concentric folding requires 2 décollement levels



Décollement fold with typical
geometry (eastern Zagros)
(Molinaro, 2004)




Syncline located just below the upper décollement (Gachsaran evaporites) (Sherkati, 2004)
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Anticline located just above the lower décollement (Kadjumi Fm) (Sherkati, 2004)
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Complete decoupling across upper
décollement (Gachsaran salt)
(Sherkati, 2004)




Role of intermediate décollement levels
a) et b): « rabbit-ear » folds
¢): transmission of deformation from one fold to the other



Example of « rabbit-ear » fold (central Zagros)

Courtesy of D. Frizon de Lamotte



Upper Miocene : growth strata within upper Agha Jari Fm




Plio-Pleistocene : M jor post-folding unconformity
Regional uplift after deposition of Agha Jari Fm.
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Ruh et al. 2014



A< 15km

Erosion

- Overall homogeneous fold
wavelength;

- Homogeneously distributed
shortening across the Simply
Folded Belt;

- Initial rapid fold growth
rate, then decrease relative
to foreland subsidence;

- Folding under low
differential stresses :

- Buckling of the competent
cover above the Hormuz salt

(Mouthereau et al., 2007)



High Iranian

Simply Folded Belt Zagros Belt (Lacombe et al.,
imply Folded Be > 9 - Plateau 2007)

k< 15km
R
Erosion

No stress data
available

c1-63 (MPaq)

o Active Inactive
= : smari-
DEFORMATION Agha-Jari wHZF o)

Pal.+Mesoz.+
Paleocene

FRONT Mishan ~ Jahrom

MZT
Gachsaran

D e P Backstop ?
Sismically Inactive

Sismically active foreland fold belt

The relative homogeneity of differential stresses agrees with the homogeneously
distributed shortening across the SFB, where no deformation gradient toward the
backstop is observed in contrast to classical fold-thrust wedges

Both pre- and post-folding differential stresses are low --> folding likely occurred at
low stresses; this favours pure-shear deformation
and buckling of sedimentary rocks rather than brittle tectonic wedging.




(Yamato et al., 2011)
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Outer folds
accommodate most of
current shortening in

the Zagros.
Their growth over the

last My can be
accounted for either
by thin-skinned
tectonics, or by the
activity of underlying
basement faults.
Cover and basement
are mostly decoupled :
this is in agreement
with superimposed
thin- and thick-
skinned tectonics
styles.

(Oveisi, PhD thesis, 2007)




Deformation in the Zagros (2) :

earthquakes and seismic faulting




Shahr-c-kord |

(Talebian and Jackson, 2004)




Localization of basement faults using
microseismicity
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(Tatar et al. 2004).
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Microseismicity
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(Nissen et al., 2011)
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Deformation in the Zagros (3) :

meso-scale fracturing




The study of fracture patterns and their possible genetic
relationships to cover folding is of key
importance in the Zagros.

Several giant oil fields are found, especially in the Dezful
Embayment

The Asmari Formation is an Oligocene-Early Miocene platform
carbonate which is the most prolific oil reservoir in Iran, and it is
commonly regarded as a classic fractured carbonate reservoir,
with production properties that depend strongly on the existence
of fracture networks



Fold geometry and kinematics have for a long time been recognized
as the most important factors that control fracturing. Stearn &
Friedman (1972) proposed a pioneering classification of fold-
related fractures, including an axial extensional set running parallel
to the fold axis, a cross-axial extensional set oriented
perpendicular to the fold axis and two sets of conjugate shear
fractures oblique to the fold axis with their obtuse angle
intersecting the trend of the fold axis.

Since then, numerous studies have attempted to relate the
development of meso-structures to either the structural domains
of the fold or to quantitatively estimated curvature of strata
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SITE 24

(Lacombe et al., 2011)




3 major sets in all the domains considered :

Set I is generally bed-perpendicular, and trends N-S to NO20-030 after unfolding.
Set IT is also bed-perpendicular, and strikes NE to ENE (NO40 to NO70) after unfolding.
Set IIT is bed-perpendicular and trends almost always parallel to the local fold axis
(E-W to NNW-SSE, mainly WNW-ESE).

Set ITI fractures trending parallel to the fold axis and observed in most sites are interpreted
as extensional axial fractures generated in response to the fold outer arc extension, hence
typically fold-related.

Fracture sets, either bed-perpendicular (in most cases) or not strictly perpendicular, against
which fractures of set ITI abut were considered pre-tilting (or possibly syn-tilting if
perpendicular to the fold axis, i.e. cross-axial).

Among pre-tilting fractures, the distinction between pre-folding and early-folding fractures is
based on the kinematic consistency with folding. While an early folding set formed during LPS in
a consistent stress field (i.e. a fold-related extensional cross-axial set or oblique shear fracture

set), a pre-folding set also predates bed tilting but may have originated in a differentstress
field (unrelated to folding).

Post-folding fractures are theoretically observed in a sub-vertical attitude and they cut across
the tilted strata irrespective of the geometry of the fold if they originated from a later,
different stress field. In our study, post-folding fracture sets have in their present attitude a
trend similar to that of the early-folding fractures of set I after unfolding. They possibly
reflect a late (post-tilting) stage of fracture development during late fold tightening.
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Forced fold above a reverse
dip-slip basement fault Regional {(~N050") joint set (first generation)

Forced-fold axial joint and normal
fault set (second generation, ~N140°)

(aspect ratio < 1/10)

Basement fault

Fault-bend/ fault-propagation
/ or detachment fold
(aspect ratio > 1/10)

(Ahmadhadi et al., 2007)



Specific occurrence of some
prefolding vein sets in the vicinity
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Fold-related fracture sets
+ reactivation of preexisting vein sets

Prefolding vein sets

-

N40*+10°

o Early stress build-up in the Zagros cover
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Cover
N50° set
(Late) Oligocene-Lower Mioce ne
o early flexure/ forced-folding .
above reactivated basement faults N40£10
N20"subset
[ N1 50°se1|, N-5 subset
/ |

Weinand normal fault dewelopment|

dueta large-scaleflexurs

forced folding above reac tivated
basernent faults

>

_——
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N20',N150" and E-W sets

N40£10"
Mio-Pliocene generalized cover folding

and thrusting

Layer parallel shortening
shear fracturas

then

Syn-folding joint and nommal faults
dueto outer-rim extensicn
Syn-folding sinistral shearing along pre-folding NSO™ veins
Re-opening of pre-folding N150°veins, with possible dextral shear component
Minor N20" veins
Syn-folding dextral shearing of pre-folding E-Wveins dueto outer-rim extension
Syn-/ post-folding low angle reverse faults
Re-opening and/or dextral shearing of pre-folding N-5 veins

Cover

extensional fracture devel opment
due to cover flaxureforcad-fol ding

(Late) Oligocene-Lower Miocene
Early flexure/ forced-folding
above reactivated basement faults

N40°£10°

Upper Miocene-Pliocene
Final phase of cover folding
+basement shortening

over



Basement structures and early basement block movements may
therefore have an impact on fracture development in the overlying
cover rocks.

The occurrence of some local compressional frends and related
fracture sets was partly controlled by underlying deep-seated
basement faults in the Zagros region. The transmission of
orogenic stress through the faulted crystalline basement of the
Zagros was probably heterogeneous and complex; deformation
propagated in an irregular fashion through the basement and the
cover leading to local stress perturbations, hence to a complex
directional distribution and chronology of fractures in the cover.

Such a complexity should be taken into account in further studies
of folded and fractured reservoirs.
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During Eocene times, the Pabdeh basin covered a wide area from the south of the High
Zagros fault toward the Zagros Foredeep Fault.
During the Lower Oligocene, progressive basin restriction and sedimentary flux
progradation toward the depocenter of the previous Pabdeh basin - between the MFF to
the north and the ZFF to the south - following the progradation of the carbonate
platform and clastic facies of the Lower Asmari Formation suggest that the NW-SE

trending basement faults were presumably reactivated




Early Miocene
(Aquitanian o
Middle Asmari Fm.)
Paleogeography
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The development of a long narrow
evaporitic intra-basin (Kalhur
Member) during the latest Oligocene-
early Lower Miocene likely indicate
an abrupt facies change (both
laterally and vertically)

—> difficult to interpret simply by
eustasy or any sedimentological
process alone, without any tectonic
control.

Rather :
the localization of this intra-basin
between the MFF to the north and the
DEF to the south and the abrupt
facies change from marls to
evaporites suggests a direct relation
between this restricted lagoon intra-
basin and deep-seated basement
faults.



Lower-Miocene
(Burdigalian)
Upper Asmari
Raleogeography
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The Ahwaz/Ghar Member delta
front, indicated by more than 30%
of the sand content of the Asmari
carbonate, formed just and
parallel to the south of the ZFF.

During Burdigalian times, the
Upper Asmari carbonates covered
the entire basin with a
hemipelagic facies toward the
northern part of the Mountain
Front Fault
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Transect based on the thickness variations of the
main lithostratigraphical units (formations) with
definite time lines (top and bottom) :

Both thickness and main facies variations within
Pabdeh/Jahrum and Asmari formations coincide with
the location of the main basement faults; this
strongly suggests that these faults were reactivated
during Pabdeh/Jahrum and Asmari deposition.



» Facies distribution and sub-basins development
In the Central Zagros during Eo (?)-Oligocene-
lower Miocene were likely controlled by the
compressional reactivation of deep-seated
basement faults

« Deformation in the region presumably started
as soon as Eocene — Oligocene, with
amplification of forced folding during
Chattian/Aquitanian (~30 — 22 Ma) and
Initiation of early vein sets within Asmari Fm



Paleostress/shortening patterns in the Zagros belt :

AMS, calcite twins and meso-scale faulting




Anisotropy of sedimentary rocks

The anisotropic behaviour of sedimentary rocks with respect to
a particular physical property (elasticity, magnetic susceptibility,

electrical conductivity and permeability) is determined by both
matrix properties and pore space distributions.

The matrix of a sedimentary rock can be anisotropic because of
preferred mineral orientation, water currents during deposition or
pressure solution in response to an anisotropic stress field during

loading.

The pore space distribution can be anisotropic because of the
sedimentation processes controlled by gravity, which often result
in transversely isotropic rocks, depositional processes driven by
water currents, and the presence of preferentially oriented cracks
within or between the minerals



AMS

The
measurement of
AMS helps
characterize
penetrative
tectonic fabrics
in deformed
rocks because
AMS is sensitive
to
even slight
preferred
orientations of
magnetic
minerals.

K1 > K2 > K3 representing
the maximum, intermediate
and minimum axes of susceptibility
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In sedimentary rocks, magnetic susceptibility Km originates
primarily from three distinct sources: (1) the dominant diamagnetic
minerals (quartz or calcite), (2) the paramagnetic minerals (claysand
other Fe-bearing silicates) and (3) diluted ferromagnetic minerals
(magnetite, hematite and pyrrhotite), depending on their relative
proportion.

Generally, Km ranges between low negative values and low
positive values (from -10 x 10-6 SI to 10 x 10-6 SI). In Fe-bearing
silicate rocks Km covered suscepftibilities up fo 500-1000 x 10-6 ST
whereas ferromagnetically dominated rocks are generally
characterized by values higher than 1000x10-6 SI. The lack of
paramagnetic minerals tends to decrease the limit of influence of
ferromagnetic fraction on magnetic susceptibility.



AMS

Compression
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The interpretation of AMS fabrics is strongly dependent
on the carrier of the magnetic signal



AMS

The magnetic fabric is typically defined using the orientation of either the
magnetic foliation, that is, the plane containing the K1 and K2 axes

when K1 & K2 >K3, or the magnetic lineation, that is, the direction of the K1-axis

Increasing internal strain in pure shear regime

* Intermediate fabric : magnetic lineation K1 still contained within the bedding but
clustered at right angle to the shortening direction, whereas the K3 is leaving the pole
to bedding and exhibits a girdle distribution around K1.

** Tectonic fabric characterized by K3 parallel to the shortening direction. K1 is either

parallel to the intersection between the bedding and the incipient cleavage or exhibits a
girdle around K3

(Frizon de Lamotte et al., 1992)



While the correlation between the orientations of
principal AMS axes and principal strain axes tends to be
very consistent, the correlation between the magnitudes
of principal AMS axes and corresponding principal strain
axes is not.
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Scenario 1 : anticlockwise stress rotations

- L

Scenario 2 : clockwise block rotations

Late Miocene-
early Pliocene

Late Miocene-
early Pliocene

| Plio-Quaternary
Present-day

‘N Plio-Quaternary

FPresent-day

L 4 L

" s Calais et al, 2003 | 4
Varnant at al,, 200 +Chu and Gordon (1998) MazQuarrie et al, 2003

20 mmdyr

(Lacombe et al.,
2006)




Middle Miocene
pre-folding

Middle-late Miocene
early-folding to syn-folding

Plio-Quaternary + Present-day
late to post-folding

(Lacombe et al., 2011)
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Stress/shortening patterns in the Zagros belt :

earthquakes focal mechanisms and GPS measurements
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P-axes (total)
Tatar et al., 2004

' o1 axis (N206°)
computed
from the total set

4

Number of data = 50

P-axes (depth <8 km) P-axes (depth >8 km) P-axes (total)
Talebian and Jackson, 2004 Talebian and Jackson, 2004 Talebian and Jackson, 2004
N , N N _
o1 axis (N209°) &1 axis (N209°) o1 axis (N209°)
computed computed computed
from the total set from the total set rom the total set

Number of data =9 Number of data = 26 Number of data = 35

(Lacombe et al.,2006)
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. Current compressional trends
Neogene compressional trends Neogene compressional trends ~ from earthquake focal mechanisms
from fault slip data in the cover 1oy cqlcite twin data in the cover in the basement
(Lacombe et al., 2006) (Lacombe et al., 2007) (Lacombe et al., 2006)

and GPS shortening rates
(Walpersdorf et al., 2006)

-~ Neogene collisional stresses consistenyly recorded at all scales

- The salt-bearing Hormuz master decollement poorly
decouples basement and cover stress fields




- The early stage of reactivation of basement faults likely marks
the onset of collisional deformation and intraplate stress build-up
in the Zagros basin. Basement-involved deformation started 25-
15 Ma and predated the initiation of cover folding.

- This indicates far-field stress transmission from the Arabia-
Central Iran plate boundary since late Oligocene-early Miocene ,
and therefore efficient mechanical coupling between the Arabian
and Eurasian plates since that time.



- The transmission of stress through the pre-fractured Arabian
crystalline basement was however heterogeneous and complex,
so the deformation front propagated in an irreqular fashion
through the basement and the cover.

- The sequence of deformation includes early inversion of
basement faults, then more or less nearly coeval thin-skinned
and thick-skinned tectonics.

- Beyond regional implications, this study also puts emphasis on
the need of carefully considering pre-folding fracture
development related to early reactivation of basement faults in
models of folded-fractured hydrocarbon reservoirs.



In contrast to other seismic regions of Iran (Alborz, Kopet
Dagh), the seismicity in the Zagros is abundant but of low
magnitude (only small to moderate earthquakes).

The comparison of seismic
and geodetic strain rates indicates mainly aseismic
deformation in the Zagros (Masson et al., 2005).

Cover is mainly decoupled from the basement (Hormuz salt);
stress transfer from the basement to the cover may however
occur during increasing strain rate (i.e., few large earthquakes).



Crustal rheology, mechanics of folding

and the building of topography in the Zagros
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T Crustal thrust wedge - Outward propagating plateau domain
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Folding in ~5.5 Myrs (Yamato et al,, 2011)/amplification after 12 Ma
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Wavelength components of the topography
(Fars region, central Zagros)
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ductile thickening of salt
Alt. 2000-2500 m

pzac-Cenozoic strata

Eccambricn streta
(Fermuz salts)

B) Wedge taper contralled by frictional behavior of
sedimentary rocks

A Alt. 2000-2500 m
Sea-level —— .

Mesozoic-Censzaic strata
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(Hormuz salvs)

Sea-level
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Eccambrian strnte
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C) Wedge taper controlled by basement-involved faulting

x Alt, 2000-2500 m
Sea-level
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{Hormuz

(Mouthereau et al.,2006)




Wedge modelling

Sedimentary
cover

p He Neas™=T07 1018Pa.s

(Mouthereau et al.,Geophys. J. Int., 2006)




Salt/cover wedge assumption

1 Sedimentary Shallow brittle-ductile wedge model
rocks Brittle
_§ H V=0.7 cm/yr (hydrostatic Byerlee's law)
o Frictional wedge sliding over a viscous
_ . layer of salt (Hormuz Fm)
Viscous (Newtonian) based on Davis and Engelder (1985)
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Crustal wedge assumption

Thick brittle-ductile wedge model

Upper Crust Brittle

V=0.7 cm/yr (hydrostatic Byerlee's law)
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Such a model involving a granulitic lower crust with sufficient
viscosity is able to reproduce the observed topography



Thick brittle-ductile wedge model

Upper Crust Brittle

V=0.7 cm/yr (hydrostatic Byerlee's law)

(Mouthereau
et al., 2006)

Observed .
a=0.86° (Gr‘nulnTe) sl AP cBae)
N Up+per' Crust a=-0.42° (Qz-Diorite)

Zower Crusit

+

p=0.5°

Analytical modelling of the Zagros wedge

—> salt is unable to sustain topography: only a model of critically-tapered
brittle-viscous wedge involving the crystalline basement reproduces the
observed ftopographic slopes across the Fars
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Zagros = superimposed thin-skinned and thick-
skinned tectonics
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