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The fold-and-thrust belt / foreland system

Orogenic wedge
Foreland basin

Syn-tectonic deposition /

Foredeep Orogen
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Defining the structural style of fold-thrust belts and
understanding the controlling factors are necessary steps toward
prediction of their long-term and short-term dynamics, including

seismic hazard, and to assess their potential in fterms of

hydrocarbon exploration.
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Internal thickening until critical angle o is reached

1. Basal sliding without internal thickening, then
2. New snow is incorporated in the wedge, o is lowered, then
3. The wedge will deform internally until o is reached again, and so on




Davis et al. (1983)

sea level

for a non-cohesive sub-aerial wedge
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Thrust units

Sedimentary cover
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Shortening is accommodated in the upper part of the crust
above a basal décollement dipping foward the hinterland

Implicit assumption of « thin-skinned » tectonic style

Topographic slope and dip of basal décollement define the
orogenic wedge



Conditions de fracturation et état critique

Dans le prisme

Critere de neorupture
(Mohr-Coulomb)

Le prisme est a I’état critique
lorsque le cercle tangente
la droite de néorupture

Base du prisme

Critere de friction
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deformation front

trajectories

Figure 14. Theoretical slip surfaces and rock trajectories in the critically tapered Taiwan wedge, assum-

ing u = 0.85.
Dahlen et Suppe, 1988




Le prisme est dit « stable » lorsqu’il ne se déforme pas (pas de changement de sa topographie)
> 1l glisse passivement
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A. Frontal Accretion
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Willett et al., 2001
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Basement involvement in fold-and-thrust belts :

what are the evidence?




Davis et al. (1983) model however fundamentally meets
several main restrictions.

A first one is related to the assumed homogeneous nature
of the material of the wedge,
so that widespread reactivation of preexisting faults in the cover is
not generally considered.

A second one lies in the assumed rigid and undeformable behaviour of
the substratum below the basal décollement, leading generally to
implicitely favor thin-skin tectonics styles,
so that basement-involved shortening is not accounted for.



Reactivation/inversion of basement faults widespreadly
occurs during orogenic evolution of collided passive
margins and this process is known to exert a strong

control on the evolution of orogen

Number of regional studies have demonstrated
the compressional reactivation of preexisting
extensional structures
within the cover and the basement
of foreland thrust belts
(e.g., Alps, Urals, Andes, Zagros, Rockies, Taiwan, ...).



Basement fault reactivation may induce :

-localization of thrusts and folds in the developing shallow thrust
wedge;
-inversion of extensional faults and development of crystalline thrust
sheets;
- out-of-sequence thrusting and refolding of shallow nappes:;
- development of accommodation structures such as lateral ramps:
- development of basement uplifts.



In foreland thrust belts of (eq..
Pyrenees-Provence), these signatures can therefore be identified in some
places by careful structural investigations of the relationships between
cover and basement.

In (e.g., western Alps), active basement uplifts
recognized by geodesy or gravimetric investigations may complement
structural analyses in demonstrating deep basement thrusting.

In (e.g., Taiwan, Zagros), seismicity combined with
structural analyses provides first-order constraints on deep crustal
deformation.

In all cases, the study of inversion of preexisting basement (normal) faults is
generally much easier in forelands than in inner parts of orogens where the
initial relationships between the basement and its sedimentary cover have
generally not been preserved and the initial attitude of the faults has been
strongly modified or erased by later evolution.
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Basement-involved shortening in the upper plate above an oceanic
flat-slab subduction zone
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Mont Blanc (western Alps) - style :

Stacking of crustal slices at the rear of the thin-skinned
fold-thrust belt as a result of basement
underplating and localized exhumation then
frontal accretion/exhumation thanks
to crustal thrust ramps

Oisans (western Alps) - style :
distributed shearing within the
basement reflecting basement underplating
then frontal accretion/exhumation thanks
to crustal thrust ramps

Lagros -style : superimposed thin-skinned and thick-skinned tectonic styles.
The basement deforms by both seismogenic faulting and ductile aseismic shearing

below the deforming detached cover

Sierras Pampeanas-Laramide - style : the basement is involved
in the foreland of the thin-skinned belt (basement uplifts).




Basement control on the late evolution
of fold-and-thrust belts :
the Jura case
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Distribution of Triassic evaporites below the Jura
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(Philippe, 1995)
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Most authors consider the formation of the thin-skinned Jura fold-and-
thrust belt as a rather short-lived event.

Near its northern rim a maximum age for the onset of thin-skinned
deformation is inferred from the Bois de Raube formation, which reveals a
biostratigraphic age between 13.8 and 10.5 Ma years and whose
sedimentation predates thin-skinned Jura folding in that area.

A maximum age of 9 Ma can be inferred from the western front of the
Jura where this fold-and-thrust belt thrusted the Bresse Graben.

Termination of thin-skinned Jura folding is less well constrained.
Undeformed karst sediments have been detected in a fold limb located in
the central part of the fold-and-thrust belt; their biostratigraphic age
implies that folding terminated before some 4.2-3.2 Ma ago in this area.
In the case that propagation of the fold-and-thrust belt toward the
foreland was in sequence, thin-skinned deformation may have operated
longer in the more external parts of the fold-and-thrust belt.

Evidence for ongoing deformation from the northern and northwestern
front of the fold-and-thrust-belt is indeed provided by studies in tectonic
geomorphology
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(Philippe, 1995)
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(Rotstein and Schaming, 2004)
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Fig. 3 U ninterpreted and interpreted part of migrated section C3. P, Top Permian; M, Muschelkalk (Triassic); A, Top Aalenian

(Jurassic); O, G rande Oolithe (Jurassic); J, Top Jurassic; R, R upelian. Zero reference is at 350 m above sea-level. Also shown are

(1) the ages of the near-surface sediments that suggest thrusting, (2) the surface elevations, (3) the locations of the Ferrette and L e
laserberg Jura anticlines, and (4) an enlargement of the main faulted area. For location, see Fig. 1.
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Fig. 2 U ninterpreted and interpreted part of migrated seismic section C2. P, Top Permian; M, Muschekalk (Triassic); A, Top
Aalenian (Jurassic); O, G rande Oolithe (Jurassic); J, Top Jurassic; R, Rupelian. Zero reference is at 350 m above sea-level. Also
shown are (1) the ages of the near-surface sediments that suagest thrusting (2) the surface elevations, (3) the locations of the
Ferrette and Le G laserberg Jura anticlines, and (4) an enlargement of the main faulted area. F or location, see Fig. 1.
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Along-strike vatiations of deformation style

and shortening : Western Alps and

Pyrenees
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Localization and style of basement-involved deformation varies along the strike of the western
Alpine arc.

In the Oisans (section C3), basement was shortened in a distributed way during the Oligocene
before deformation localized on the frontal ramp that activated the Vercors shallow
decollement. Deformation there was thus first characterized by accretion and thrust stacking
below the wedge (distributed underplating) without wedge widening, and later by frontal
accretion hence orogenic wedge widening during Miocene times.

In contrast, along the Mont Blanc-Aiguilles Rouges section, basement shortened by underplating
below the internal units during the Oligo-Miocene. During the late Miocene -early Pliocene,
basement units were still underplated (lower Aiguilles Rouges) while a very wide cover domain
was accreted in frontal parts (e.g., Jura and Molasse Basin) with the activation of large
basement thrusts. Moreover, both amounts of shortening and shortening across the entire
external zone increase from the Oisans section to the Mont Blanc section. The increase of the
amount of shortening is most likely due to a wider inherited Mesozoic basin in the North (Ultra-
Helvetic/Valaisan).

However, the increase of the shortening values probably has a rheological explanation. Along the
Mont Blanc section, basement shortening remains localized, leading to stacking of basement
slices (section C1). while it is distributed far toward the foreland along the Oisans section
(section C3);

this can be related to the rheology of the crust during collision, the more buried and thermally
weakened crust at the latitude of the Mont Blanc (400°C, Bkb) being more prone to localized
shortening at the orogen-scale.
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P-T conditions of deformation in the Pyrenees were very different from the
western Alps, especially in term of burial which remained much shallower.

However, the striking similarity in term of basement shortening style
between sections C1 and D2, and sections C2 and D1, suggests that along-
strike variations in the structural style may also be controlled by difference
in crustal thermicity, with temperature lower to the West than to the East.

This is consistent with the maximum femperature recorded by Raman
Spectroscopy on Carbonaceous Material technique in the NPZ and related the
Cretaceous extension and mantle denudation, higher to the East than to the
West (Clerc & Lagabrielle, 2014). In this perspective, the crust was hotter
and weaker in the East, where, as a consequence, shortening was more
localized than in the West, although the total shortening is similar.

Low-Temperature thermochronology supports that the high geothermal
gradient has lasted 30-50 Ma after extension, hence during convergence in
the NPZ (Vacherat et al., 2014) and probably also in the Axial zone, which
likely favored basement-involved shortening



Basement control on the kinematics of
fold-and-thrust belts :

the Laramide belt case
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A) 83 Ma: Late Cretaceous

Bird (2002) Sevier & Hidalgo orogenies
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Jurassic - Cretaceous: The Western Interior Basin

[
105°W

"0W  CANADA

Late Jurassic
(~155—142 Ma)

DeCelles, 2004



Late Cretaceous - Paleocene: The Bighorn Basin

106°W

Maastrichtian ~ 500 H'I'f-]

(~71.3—65.4Ma) - vow, L

Campanian’ - .
(~83.5—71.3Ma) - MOW |

DeCelles, 2004
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A. Rattlesnake Mtn., Wyoming

+ % +
+ Archean +

o ¥ Basement, *
+

Surface Geology from
Pierce (1968), Stearns (1971)

B. Fault Dip Calculation

Hanging Wall Dip — Footwall Dip
AC and AB Are Bed Lengths

H = (BC + AC/2) sin A

S = Total Shortening — Tilt Shortening

S = AB - AB — (BC + AC/2) (1 - cosA\)
Fault Dip Relative to Fooiwall = arctan (H/S)

S64W o

L3

+ . .
[+ Geology from Reed (1973)
t" Locel Relief Exceeds One Kilometer

. g
‘*#-o-o-ft*,;."A**”"‘

Erslev (1986)
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anticline from Hennier and Spang, 1983. Bedding dips and Formation
contacts are constrained by surface mapping and geologic markers from
exploration wells. Hennier and Spang postulate a relatively undeformed
basement with multiple thrust planes in an overall wedge shaped
geometry to generate folding in the overlying sediments.

SW-NE trending cross-section through Sheep Mountain
anticline from Forster et al., 1996. Bedding dips and Formation are
constrained by surface mapping and geologic markers from exploration
wells. A wedge shaped fault zone is hypothesized as the mechanism by
which overlying strata fold.

SHBEP MOUNTAIN ANTICLINE
)

Tennluw
Madison
Big Horm

| TRANVSERSE CROSS SRCTION
SKEEP MOUNTAIN ANTICLINE

T32.33N = R9IW
Big Horn Basin, Wyoming

a SW-NE trending cross-section through Sheep Mountain
anticline from Brown, 1984. Geological constraints are not given, but are
most likely surface dips and formation markers from wells. Brown
proposes substantial basement folding and a wedge shaped fault zone
beneath the forelimb of Sheep Mountain.

- SW-NE trending cross-section through Sheep Mountain anticline from Stanton
and Erslev, 2002. Geological constraints are surface dips, formation markers from wells,
and three 2D seismic profiles. Stanton and Erslev propose a moderately folded basement.
Their kinematic modeling suggests that the Rio thrust fault slipped after slip along the fault
beneath Sheep Mountain Anticline had already uplifted the fold.
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B Elk Basin anticline, a mature thrust fold. A: Time-migrated, interpreted seismic profile (600%
dynamite, 1969; modified from Weitzel, 1985). TWT is two-way traveltime. B: Structural cross section
(see Fig. 15 C) showing well control, common Paleozoic oil pool (diagonally lined with oil-water
contact (O.W.C.), a fault-limited chord (FLC) at the base of the Dakota (Kd) horizon, and values for
the various angles (modified from Stone, 1983a). S.L. is sea level.
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Basement-Involved, Second-Order Anticlinal Structures
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Erslev (2005)
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Figure 1. Tectonic map of the Rocky Mountain region showing the major Laramide arches, which are commonly cored by
Precambrian crystalline basement expos (fine stipple), as well as the adjoining Colorado Plateau (coarse stipple) and

Cordilleran thrust belt. Average compression directions from minor faults are shown as arrows; smoothed (10°) rose dia-
grams show all compression and slip directions from Table 2.

Erslev (2009)
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Cordilleran Stress Guides

Cordilleran Thrust Belt

Laramide Foreland Arches
: 4#' ||”||l T
it as —g%reic“ ed )

™, “Lithospheric Mantle , *
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S S S S

Schematic cartoon showing multiple stress guides and multilevel detachment during
Cordilleran-Laramide lateral compression.

Oblique
Subductio

Schematic block diagram showing the development of Lara-
mide structures by crustal detachment during lithospheric coupling in a
low-angle subduction west of the Rockies. Note that variable slip on the
ErSIGV (1993) detachment could explain the rotation of the Colorado Plateau.
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. Rapid exhumation based on AFT [] Rapid basin subsidence
. AFT exhumation with large uncertainty or slow rate

‘r Initiation of cooling based on AHe A Surface elevation >2 km
nBasement detritus in synorogenic sediment

Fan and Carrapa, 2014
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Early Maastrichtian Late Paleocene  Early Eocene
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— Surface uplift

Fan and Carrapa, 2014



Early Eocene Western North America

Modern South America
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Crustal faults and biharmonic
folding of the upper plate
lithosphera (crust/mantle)

Crustal buckling and
detachment

Sub-crustal shear




Basement control on along-strike variations
of fold-and-thrust belts :
the Taiwan case
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A Plio-Pleistocene
collision between
the N-S Luzon
volcanic arc and
the ENE Paleogene
chinese continental
passive margin
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teady critical wegde model for Taiwan

Critically tapered wegde
(with thin-skinned approximation)

Eurasian sediments are scraped off

and deformed into the Taiwan orogen Rigid backstop

Sea level {
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Phlllppmes SCENAHELR

Undeformed lithosphere

“basement” T Davisetal, 1983 -
Suppe, 1981
Barr and Dahlen, 1990

Wedge shape (taper) Steady development

unchanged through time
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h.V=e.W Accretionary flux = erosion flux




Chunglun Tingpinglin

Thin-skinned hypothesis

Large shortening
of the sedimentary cover




Basement topography

(Mouthereau et al., 2002)




Structural inheritance and inversion south of the basement
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2 very different visions of the structural style in northern Taiwan
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Figure 2. Structural interpretation through section 1111’ in the northern part of the Miaoli-Hsinchu area.

(Namson, 1981)




Western Foothills
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(Lacombe et al., 2003)

Right-lateral transpressional
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NW Taiwan : the position of the salient’s apex coincides with the
location of the precollisional depocenter (thickest strata) in the basin from
which the salient formed.

The NW Taiwan salient mainly formed in response to the along-
strike variation in the pre-orogenic basin thickness, leading to recognize
this salient as a basin-controlled salient.

It differs from arcs formed in thin-skinned orogens in that deformation
was accommodated by both thin-skinned shallow thrusts and basement
faults and therefore that both the cover and the basement are involved in
collisional shortening.

- « Passive » and/or « active » basement control on geometry
(segmentation, curvature, ) and kinematics of fold-thrust belts
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2 very different visions of the structural style in central Taiwan
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(Lacombe and Mouthereau, 2002)
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Chichi (Mw=7.9)
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The Chichi earthquake :
initiation of a thrust ramp dipping

30° at 11-12 km which connects to

the Chelungpu thrust (an
inherited normal fault)
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The earthquakes occur on essentially the same 30°
dipping fault plane ramping up from ~20 km depth
near a cluster of 1999 Chi-Chi earthquake
aftershocks to the shallow detachment and the
Chi-Chi fault plane.
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The degree of basement involvement vs thin-skinned deformation
increases as the lithosphere weakens (rheology of the lower crust)

(Mouthereau and Petit, 2003)
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Some first-order rheological controls

of the structure of fold-and-thrust belts
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Correlation between spatial variations of the flexural rigidity of the
lithosphere and the nature and amount of foreland deformation has been
suggested for the Andes FTB (Watts et al., 1995) and Taiwan (Mouthereau
& Petit, 2003).

These authors documented that regions with low Equivalent Elastic
Thickness (Te) correlate with thick-skinned deformation whereas regions
with high Te correlate with thin-skinned deformation. The idea behind is
that a strong lithosphere is less easily deformed so that shortening is
localized in a narrow zone at shallow depth, while a weaker lithosphere
enables crust-mantle decoupling and shortening of the whole crust.

Mouthereau & Petit (2003) emphasized that the local increase of plate
coupling and inhomogeneities in a prefractured margin as in Taiwan can
affect the rigidity of the layered continental lithosphere, supporting a
mechanical relationship between its strength and the structural style.
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Passive margins are key players in the collisional processes as the arrival of
theirproximal, poorly thinned parts into the subduction zone mark the onset of
collision. The transition between continental and oceanic crusts is often marked by a
wide domain of progressively thinner continental crust, with occasional locally
exhumed sub-continental mantle.

Differential stretching of the lithosphere modifies its rheological properties which
will subsequently control deformation style during collision (Cloetingh et al., 2005). As
the crust thins and cools during progressive rifting, the reduction in overburden
pressure and femperature makes the rocks which originally deformed by plastic creep
gradually become more prone to brittle failure. The result is that the initial weak
zones in the middle crust and deep crust disappear and that the entire crust becomes
brittle. The important consequences of the progressive embrittlement of originally
ductile rocks during lithospheric extension are (1) that lateral flow or displacement
of particular layers within the crust should become progressively more difficult as
rifting proceeds, and (2) that the upper crust becomes coupled to the mantle (Reston
& Manatschal, 2011).

> For thick-skinned FTBs that developed from former passive margins, the
occurrence of weak mechanical layers within the proximal margin lithosphere (the
middle and most of the lower crust are expectedly ductile) may explain
thatcontractional deformation be distributed within most of the crust, giving rise to
basement- involved tectonic style. In contrast, because these weak crustal levels are
usually lacking indistal parts of the margins as a result of thinning, these stronger
lithospheric domains are more prone to localized deformation in a continental
subduction style.



Strength

The weakness
of inherited faults favors
fault reactivation,
hence basement high-angle
thrusting in the foreland

If the crust is thermally weakened
before convergence,
basement-involved

shortening likely occurs

If the crust is thermally weakenad
before convergence and displays weak
inherited faults, basement-involved

shortening may occcur
with or without
reactivation of inherited faults

Thrust sheet

fior weak inherited basement
faults Mweak” Byerles]

If the crust is buried
and thermally weakened
during convergence, pre-existing faults
are not significantly weaker
than the crust, so basement-involved
shortening may occur without
reactivation of inherited faults




Deformation in orogens
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Long et al. (2011)
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Two main modes of accretion - why?
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Estimates of shortening in 30 fold-and-thrust belts
worldwide

Courtesy of F. Mouthereau



Shortening /structure

Thin-skinned ~40-75%
Thick-skinned ~20-40%




Long-term strength of continents
(18,633 Te values)
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Gravimetry + flexure analysis

Mouthereau et al. (2013)



Thermotectonic age of continents
= age of the last tectono-magmatic event
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There are increasing lines of evidence of basement-involved shortening in FTBs,
even in the ‘archetypal’ thin-skinned belts. This basement involvement is often
associated with basement inversion tectonics.

The pre-orogenic deformation of the basement may control the geometry,
kinematics and mechanics of FTBs, either at the scale of the whole belt (e.g., belt
curvature, segmentation and along-strike variations of structural styles, sequence
of deformation, localization of contractional deformation and % of shortening) or at
the scale of tectonic units (reactivation of inherited basement faults, basement-
cored folding). In some cases however, inherited basement (normal) faults are not
reactivated whereas newly-formed compressional shear zones develop, which brings
into question the bulk rheology of the crust vs the rheology of preexisting fault
zones available for reactivation.

In basement-involved, thick-skinned FTBs, shortening is distributed throughout the
whole crust and is usually lower than in their thin-skinned counterparts, which likely
requires/reflects a specific thermo-mechanical behavior of the underlying
lithosphere (e.g, hot and young, hence weak). In FTBs resulting from inversion of
former proximal passive margins, basement thrusting that occurs in a rather
localized way in their inner parts requires structural inheritance and/or a hot
crustal temperature either inherited from a recent (pre- orogenic) rifting event or
resulting from syn-orogenic underthrusting and heating.



Basement-involvement in FTBs raises the question of the way the orogen is
mechanically coupled to the foreland and how orogenic stresses are transmitted
through the heterogeneous basement of the foreland/plate interior. Development
of thick-skinned belts within cratons remains somewhat enigmatic and likely
requires specific boundary conditions (strong interplate coupling, such as provided
by flat-slab subduction) ensuring efficient transmission of stresses
(crustal/lithospheric stress guide) and propagation of deformation in the pro- and
retro-foreland by crustal/lithospheric buckling or deep crustal decollement, in
addition to local structural and/or possible physical/compositional weakening.
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