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Why to characterize stresses in the crust ?

The motivation arises :

from applied geological purposes, such as geological
hazards, engineering activities and resource
exploration;

and

from fundamental geological purposes, such as
understanding the mechanical behaviour of geological
materials and deciphering various tectonic mechanisms,
from those related to plate motions at a large scale to
those causing jointing and faulting or even
microstructures at a smaller scale.




Despite an increasing humber of in situ stress
measurements, magnitudes of crustal stresses remain
poorly constrained...

Twinning of minerals depends on the magnitude of the shear
stress which has been applied to them.
One can make use of this property to evaluate the magnitudes of
stresses which have been supported by a rock during its history.

An access to paleostress magnitudes in the
upper crust : Calcite twinning paleopiezometry




In the upper part of the crust, brittle deformation of carbonate rocks is
accompanied by pressure-solution, porosity reduction and crystalline
deformation.

Deformation of calcite grains reflects the brittle-to-ductile transition.

This low-temperature (0-300°) plasticity corresponds to the prevailance of
e-twinning {10-12}, which is more easily activated at low temperature than
other gliding systems, so that in most deformed limestones, e-twins are the
dominant microstructures in calcite crystals.



How to constrain both orientations
and magnitudes of past stresses :

calcite twinning paleopiezometry



Geometry and significance of calcite twins




Twinning ~ simple shearing in a particular sense and direction
along e-planes {01-12}
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A twin is a polycristalline association formed by the juxtaposition of two homogeneous
parts, or more, of a single crystalline species, oriented one with respect each other
following well-specified laws.

This very general law is applicable to growth twins and mechanical twins, among others.

The composition plane along which twinning occurs is a plane of high atomic density
that separates the twinned portion of the crystal from the host (untwinned) part.
The twin plane is the plane that belongs to both portions : it is the equivalent of the
shear plane if one considers that a twin lamella results from simple shearing of the
crystal.

The twinning direction is the « gliding » direction : this is the line that connects an
atom before twinning o the same atom after twinning; it belongs to the twin plane.

The orientation of the twinned portion of the crystal can be deduced from the
orientation of the host crystal by a rotation that accounts for the geometry of the
lattice. However, this rotation is virtual and by no means corresponds to the physical

mechanism of twinning.



« Translation gliding » (r, fin calcite for example) reflects the macroscopic
motion of an edge dislocation along the gliding plane; the host crystal is
« simply sheared ».

« Twinning » (e in calcite) can also be described as geometrically analogue of
simple shearing of the crystal lattice along the twin plane, but it differs
from gliding because :

(1) Twinning is "homogeneous", i.e., each plane of the lattice is displaced by
the same quantity with respect to the « above » plane

(2) The twinned portion is the mirrored part of the host crystal across the
twin plane, which reflects the motion of a screw dislocation across the
crystal lattice. In addition, the amount of strain accommodated by
twinning is constant for a given twinning law.
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CRYSTAL

YES NO
Visible twin lamellae Non visible twin lamellae
Direct measurement Indirect measurement

Spatial orientations of about 270 planes,
twinned and untwinned
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The data...




Among the on-going improvements

Automatic data acquisition using EBSD

Host crystal Twin lamella




(micro-)twins thick twins

50% twinned
v= 0.34
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Schematic diagram illustrating the difference between thin and thick twins, twin density
(number of twins per mm) and percentage volume fraction of twin lamellae. In both cases,
exactly the same amount of shearing by 15% (y=0.1) and 50% (y=0.34) twinning
respectively is distributed either relatively homogeneously into many thin twins or just a few
thick ones - the latter case is leading to very inhomogeneous deformation and causes larger
steps in the grain boundary.

(Burkhard, 1993)




(Burkhard, 1993)

Natural example of a calcite grain, considerably deformed by twinning on a single set of
thick twins (drawn after microphotograph). Twins (white) are identified as such by their
slight lense shaped constriction toward the grain boundary. The calcite grain is graphically
retrodeformed into its presumed original shape. Very angular steps in both actual and
retrodeformed grain boundary are circled. Such steps are a consequence of twinning
deformation and their impingement (on the left hand side) requires pressure
solution/cristallisation deformation along the grain boundary in order to prevent the

formation of voids. Stereogram in the upper left hand corner shows the crystallographic
orientation of c-axis of host, e-lamellae (great circle) and inferred shear direction.




(Burkhard, 1993;
Ferrill et al., 2004)
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type I

type II

type III

type IV

Geometry

Description’

-thin
-straight
-rational

~thick (>>1um)
-straight

-slightly lenseshaped
-rational

-curved twins
-twins in twins
-irrational
-completely twinned

-thick, patchy
-sutured boundaries
-trails of tiny grains
-irrational

Interpretations

-little deformation
-little cover
-low temperature

-(post-metamorphic)
-(late tectonic)

-considerable def.
-completely twinned
grains are possible

-syn- or post-
metamorphic

-large deformation.
-intracrystalline
def. mechanisms
e.g. (r-& f-glide)
-syn-metamorphic
deformation.

-large deformation

-recrystallization
(grain boundary
migration)

-pre- or syn-
metamorphic

Temperature

< 200°C

150-300°C

> 200°C

>250°C

Increasing temperature
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Groshong et al 1984; [J2 0 -5%

Groshong et al. 1984, 02 5-10%

Ferrill 1991, Ferrill & Groshong 1993a, b.JJ2 0-5%
Fernill 1991, Ferill & Groshong 1983a. b: JJ2 5- 10 %
Fernll 1991, Ferrill & Groshong 1993a, b: 02 10-15%

T " S 2 Evans & Dunne 1991 unpublished. /J2 0 -5 %
win Strain  —— =

Evans & Dunne 1991, unpublished J2 5 - 10 %

Onasch unpublished; /J2 0 -5 %
Onasch unpublished; /J2 5 - 10 %
Smart et al 1997./02 0-5%

Spraggins & Dunne 2002, 02 0-5%
Spraggins & Dunne 2002./J2 5- 10 %

Appalachians

(Ferrill,1998)

—— Isostrain contours based on equation (1) in Groshong 1972, y= 004 or 0.1

(Ferrill et al., 2004)



Stress and strain analysis of calcite twinning :
The ‘historical’ techniques



Groshong (1974, 1984) : determination of the strain tensor by twinning

Deformation
by shearing
for a twin set

[eg= (lelg-neng) ex + (Memg-neng) ey + (lemg+melg) T'xy + (Meng+nemg) Tyz+ (Nelg+leng) T'zx,
with €x, gy, T'yz, [xy and I'zx being the components of the strain tensor in (x,y,z) and le, Me, Ne
and lg, Mg, Ng the direction cosines of e and g in (x,y,z). €z = - (Ex+&y) assuming AV = 0

Limitations :
- time consuming - finite strain tensor by twinning only
- significance of finite strain tensor in case of polyphase tectonics ?



determination of differential stress magnitudes
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PERCENTAGE OF GRAINS

Jamison and Spang (1976) :

if C is known, AC

In a sample with no preferred crystallographic
orientation, the percentages of grains twinned
on 0,1, 2 ou 3 twin planes are functions of the
applied differential stress (c1-63) value.
Experimentally calibrated

Limitations :
- uniaxial stress
- critical resolved shear stress for twinning
= constant tC = 10 MPa
- takes into account neither grain size nor
mutual compatibility of fwin systems
-significance of 'bulk’ maximum differential
stresses in case of polyphase tectonics ?



Rowe and Rutter (1990) : determination of differential stress magnitudes
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Rowe and Rutter (1990) : determination of differential stress magnitudes

Twin density, D

O Carrara marble
a Taiwan marble
o Solnhofen limestone

Standard error=43 MPa
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Rowe and Rutter (1990) : determination of differential stress magnitudes

* Schmid and Paterson 1977
& Taiwan marble

O Carrara marble

e Solenhofen limestone

Twinning incidence,
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Influence of grain size

Slope = twin density,
does not depend on grain size

(Rowe and Rutter, 1990)

T =400°C
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Influence of grain size distribution on estimates of differential
stress magnitudes (after Newman, 1994)

Decreasing distance to fault
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Influence of temperature on estimates of differential stress
magnitudes (Ferrill, 1998)

I S D R
Subalpine belt Ferrill (1998) Jam|§9n et Spang (1976) 44 MPa 75-250 °C
_ densité de macle de Rowe et Rutter (1990 235 MPa
Holl & Jamison et Spang (1976) 65 MPa 190 - 235°C
Southern Pyrenees _ W
] Anastasio (1995)|densité de macle de Rowe et Rutter (1990 249 MPa

= Rowe and Rutter technique : well
calibrated for temperature > 400°C,
BUT cannot be used at low T°C
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To sum up :
- Turner’s (1953) dynamic analysis : yields only o1 and o3 orientations
- Groshong’s (1984) strain gauge technique : yields a twin strain tensor

- Jamison and Spang 1976) and Rowe and Rutter (1990) techniques :
yield only ‘bulk’ maximum differential stress (c1-03)

None of these techniques allows to relate differential stresses
to principal stress orientations and stress regimes;
moreover,
they are commonly used separately
without care of their specific limitations



The Calcite Stress Inversion Technique
(Etchecopar, 1984)



« Etchecopar » (1984) technique : determination of the reduced stress tensor

The inversion process is very similar
to that used for fault-slip data :
twin gliding along the
twinning direction within the twin
plane is geometrically is comparable
to slip along a slickenside lineation
within a fault plane.

But the inversion process takes into
account both twinned planes
(resolved shear stress > CRSS)
AND
untwinned planes
(resolved shear stress < CRSS),

a major difference with inversion of
fault-slip data




Inversion of calcite twin data [? Reduced stress tensor
(4 parameters)
Orientation of principal stresses and stress ellipsoid shape ratio

‘constant’ CRSS
for a set of calcite grains
of homogeneous size

Deviatoric stress tensor (5 parameters)
T, =T —("1 “;2 ”3]. |

Orientation of principal stresses and differential stress magnitude

(0'1 — 0'3) (02 - (73)

1




Or

0%
o1
Pi= (0] +0,+0) /3

Faults -- Reduced stress
tensor

Calcite twins --
Deviatoric stress tensor
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Consistent twinned planes
Inconsistent twinned planes
Consistent untwinned planes
Inconsistent untwinned planes

Twinned planes
Untwinned planes
Internal twinning threshold

Position "Turner"
Resolved shear stress

% twin planes

! ! T T
10% untwinned planes - 50% twinned planes
incorporated incorporated

position "anti-Turner"




plans maclés
plans non maclés

Rapport ® Fonction
— — de pénalisation
Meilleure .o Meilleure

solution solution
0,2

v

Definition of optimal
stress tensor solution

45% 47% 49% 51% 53% 45% 47% 49% 51% 53%
% plans maclés compatibles % plans maclés compatibles

% plans non maclés B
Meilleure incompatibles
solution Sl

v

(Laurent et al., 2000; ,
Lacombe, 2000) o s ke compaltine




Searching for the best solution ...

Zone de stabilité

Zone de stabilité

rapport au Mord
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The strength of a sliding system (twinning or sliding ss) is conventionally
expressed by a Critical Resolved Shear Stress (CRSS). It corresponds to the
resolved shear stress along the sliding plane along the sliding direction that
must be reached to induce a significant plastic (permanent) deformation, i.e.,
to induce motion of a number of dislocations, so that sliding becomes
macroscopically observable independently of the orientation of the deformed
grain. Such a behavior is commonly associated with a critical point on the
stress-strain curve for a monocrystal.

The value of the CRSS is given by : . s corresponds to the
applied stress at the critical point; S is the Schmid's factor, such as S = cos a
x cos B, with o the angle between compression and the normal to the twin plane
and B the angle between compression and the twin vector. The RSS along the
Twin vector is maximum when o et B are equal to 45°, S varying between O and
0,5 depending on crystal orientation.

The sources of stress concentrations like grain-scale heterogeneities being
very numerous in natural crystals (dislocations, fractures, indenters,
preexisting twins), the twinning threshold (= the CRSS) likely reflects the
stress required to propagate rather than to nucleate twins.



Critical shear stress value
for twinning (MPa)

)}

Critical shear stress value
151 calculated at 3% strain
Turner et al., 1965

Critical shear stress value
calculated at yield
Turner et al., 1954
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The Critical Resolved Shear Stress for twinning is ~ independent on T°C but depends

on grain size and internal strain (hardening)
(Lacombe, 2001, 2010)




Critical resolved shear stress (MPa)

T i Twinning strain
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Mean grain size (um)
»
800 900 1000

(Amrouch, 2010)




O3D

o1 O

Pi = (0] +0,+0) /3

Fault-slip data : reduced stress tensor

Calcite twin data :
deviatoric stress tensor

6'D= 6T'Pi

02D




Linking paleostresses
with tectonic evolution and crustal mechanics



How to establish relative chronology ?
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N-S trending vertical vein
(set1)

04: 275°-78°

05: 168°-03°

04: 078°-11°
Tensor 1: ® = 0.68

Extensional (strike-slip) stress regime

041 276°-04°
0,: 158°-82°
04: 007°-07"
® =0.80
Strike-slip (extensional) stress regime

Tensor 2:

Ardeche (Lacombe, 1992)




This reasoning can be reasonably extended to a first
approximation to stress tensors recorded by calcite filling
veins by considering that the tensor consistent with vein

opening was likely recorded during (or at the latest stage) of
vein opening while other (unconsistent) tensors reflect later,
post-opening stress regimes



With respect
to folding...
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Talwan (Lacombe et al., 1996)




Some applications of calcite twin analysis
for reconstructing regional tectonic evolution



Experiments

Orientations and magnitudes
of paleostresses

Seismic profile
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Burgundy (Lacombe et al., 1990)



Seuchey

OLIGOCENE EXTENSION




Unité de

i Sainte-Victoire
e

Lacombe et al.,
1991

Bassin de

Pont de Bayeux




(Lacombe, 2001)

= After Lacombe

22°

etal, 1993; Rocher
etal, 1996

Coastal
Range

== After Linand Lee
(1997)

- After Rocher
(1999)

After Hung, 1994,
== Hungand Kuo, 1999
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] Holocene

EZ] Plio-Pleistocene
Miocene

E7] Pre-Miocene

5 Neogene reef
limestones

1. Kungtien; 2 : Chentoushan;

3. Niushan; 4. Takangshan;

5. Hsiaokangshan; 6. Panpingshan;
7. Kaohsiung; 8. Fengshan

Kungtien limestone
(projected) Chunglun anticline

Type | tensor : prefolding Type |l tensor : postfolding Type |ll tensor : synfolding
NW-SE compression NW-SE compression NW-SE compression

»

Takangshan » ‘
anticline E
Main NW-SE compression  Minor late ENE-WSW compression

(Lacombe, 2001)
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The Zagros belt results from the collision between Arabia and Central
Iran, beginning in (Oligo ?)-Miocene times and continuing today.

About one third of the 22-25 mm/yrArabia-Eurasia convergence
is currently accommodated in the Zagros.

(Mouthereau et al., 2007;
Lacombe et al., 2006)

Mountain Front F. Surmeh-Ghir Th. High Zagros F.

l l Surmeh anticine  Asmari-Jahrom Fms. l

Asaluyeh anticline

Fars grou
"/ Pal.+Mesoz.+Paleocene v’/ \ A P\
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Shelf
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Twins are analysed within host rock matrix and veins
from field samples and/or drill cores




zZ2B FENTE
Axes C

N M

Z2B VMIATRICE
Axes C

N M

Z4 VMIATRICE

zZ2B FENTE
Plans non macles

NM

Z2B MIATRICE Z2B MATRICE
Plans macl/es Plans non macles

NM N M

Z4 VMIATRICE Z4 VMIATRICE
Plans macl/es Plans non macl/és

N M




T RANO 4=

e
|/

T RANO4Z3

NM
®
Stress tensors

computed from
calcite twin data

[ 4 Stress tensors
fault slip data
&

T RANO4 =3




Data coming from host
rocks and/or syn-
folding veins
are treated separately
or together to check
for internal
consistency.
Consistency with
fracture and fault-slip
data is also checked

Tensors
determined
from vein 1

Tensor

determined
from vein 2
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Sampling in fold limbs allows establishing a relative chronology
between twinning strain and folding

s, 5
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Sampling in fold limbs
allows establishing a relative
chronology

between twinning strain

and folding







31°N

"\ Iranian

29

28

27°N 27

25 nanostrain/yr

5 +/- 1 mmlyr

51°E 53

Current compressional trends
Neogene compressional trends Neogene compressional trends ~ from earthquake focal mechanisms
from fault slip data in the cover 1oy cqlcite twin data in the cover in the basement
(Lacombe et al., 2006) (Lacombe et al., 2007) (Lacombe et al., 2006)

and GPS shortening rates
(Walpersdorf et al., 2006)

- Neogene collisional stresses consistently recorded at all scales
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Cretaceous
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Differential stress magnitudes
in fold-and-thrust belts and orogenic forelands
Some examples



High Iranian

Simply Folded Belt Zagros Belt Plateau (eIl Cl el
: Geology,

2007)

o
1

h<15km

Erosion

bNo stress data
available

c1-63 (MPaq)
S

o
L 1

R Active  Tnactive
DEFORMATION Agha-Jari sSmari- wHZF ?

Pal.+Mesoz.+
Paleocene

MZT

FRONT Mishan ~Jahrom
Gach_saran ‘

) | Backstop ?
Y, Hormuz salt Sismically Inactive

\ e —

Sismicalrl?y active foreland fold belt

The relative homogeneity of differential stresses agrees with the homogeneously
distributed shortening across the SFB, where no deformation gradient toward the
backstop is observed in contrast to classical fold-thrust wedges

Both pre- and post-folding differential stresses are low --> folding likely occurred at
low stresses; this favours pure-shear deformation
and buckling of sedimentary rocks rather than brittle tectonic wedging.




Arabia-Eurasia collisional stresses were consistently
recorded by calcite twinning in the detached cover of
the Zagros (Fars).

Calcite twinning paleopiezometry reveals an unexpected
low level and first-order homogeneity of differential
stresses across the SFB, which supports an overall
mechanism of buckling of the cover sequence.



== After Linand Lee
(1997)

- After Rocher
(1999)

etal, 1993; Rochp | After Hung, 1994,
22°  etal,1996 === Hungand Kuo, 1999

== After Lacombe




] Holocene

EZ] Plio-Pleistocene
Miocene

E7] Pre-Miocene

5 Neogene reef
limestones

1. Kungtien; 2 : Chentoushan;
3. Niushan; 4. Takangshan;

5. Hsiaokangshan; 6. Panpingshan;

7. Kaohsiung; 8. Fengshan

Kungtien limestone
(projected) Chunglun anticline

Type | tensor : prefolding Type |l tensor : postfolding Type |ll tensor : synfolding
NW-SE compression NW-SE compression NW-SE compression

ISEC I

limest am’c“ne
Mam NW-SE compression  Minor late ENE-WSW compression B'

:Plio-Pleistocene

(Lacombe, 2001)




A Prefolding compression (LPS)
Main twinning event

TUpIiﬁ
) \\

. /
Erosion
/%
L//

B Synfolding compression and erosion

C Postfolding compression
Main twinning event

(Lacombe, 2001)
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« Collision » stage

Thick-skinned
tectonics

« Accretionary
wedge » stage
Thin-skinned

tectonics

\

== After Lacombe

etal, 1993; Rochg

22°  etal, 1996

== After Linand Lee
(1997)

- After Rocher
(1999)

After Hung, 1994,
== Hungand Kuo, 1999

After removing the
effect of lateral
variations of
burial...

Differential
stress
decrease



hick-skinned

After removing the effect of lateral
High (c1-03)

variations of burial...
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Calcite twinning analyses in Taiwan Foothilld document
possible along-strike changes in differential stress
magnitudes recorded by cover rocks
depending on the tectonic style.
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Calcite twinning analyses in orogenic foreland possibly
document a decrease of differential stress magnitudes
with increasing distance to the belt



Determination of principal stress magnitudes,
(i.e., the complete stress tensor)
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Comparison with modern stresses
in terms of patterns and physical meaning



Comparison of paleostress magnitudes from
calcite twins with contemporary stress
magnitudes and frictional sliding criteria
in the continental crust: Mechanical implications
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Application of Coulomb faulting theory with laboratory-derived

coefficients of friction (e.g., Byerlee, 1978) allows prediction of

critical stress levels in reverse, strike-slip, and normal faulting
environments as a function of depth and pore pressure.

The /n situstress data compiled by Townend and Zoback (2000)
and plotted with the theoretical curves for a critically stressed
crust under hydrostatic conditions show consistency with Coulomb
frictional-failure theory incorporating laboratory-derived
frictional coefficients, p, of 0.6-1.0 and hydrostatic fluid
pressure for a strike-slip stress regime.

The crust's brittle strength is quite high (hundreds of MPa) under
conditions of hydrostatic pore pressure.

The stress/depth gradient depends explicitly on the stress
configuration, i.e., normal, strike-slip or reverse stress regime.



On the difficulty of establishing
a paleostress/ paleodepth relationship

Collecting data on contemporary stress and paleostress
magnitudes with depth is fundamentally different.

In drill holes, contemporary stresses are determined directly at a
given depth, or at least in a narrow depth interval.

In contrast, paleopiezometers are generally sampled and analysed
after they have reached the surface, i.e., after exhumation from
an unknown depth, and establishing a differential stress versus
depth relationship for paleostresses requires independent
determination of differential stress and depth.

In addition, in case of polyphase tectonism, deciphering the
stress/depth evolution requires to unambiguously relate a
differential stress value to both a depth of deformation and a
tectonic event.



Paleodepth estimates are usually derived from stratigraphic/
sedimentological studies in forelands or even fold-thrust belts,
from paleothermometry coupled with considerations on
paleothermal gradient, recrystallisation accompanying ductile
deformation or fabric development, or from metamorphism.

Uncertainties on the stress versus depth relationship of interest
are partly due to uncertainties on depth estimates.



Increasing differential stresses
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For a favourably
oriented pre-existing cohesionless fault plane, the condition of

reactivation, which therefore applies to a critically stressed
crust, can be written as follows (Jaeger and Cook, 1969).

1
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(Lacombe, 2007)
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At the present-day state of our knowledge and with
the available dataset, most contemporary stress and
paleostress data support a first-order frictional
behaviour of the upper continental crust.

The strength of the continental crust down to the
brittle-ductile transition is generally controlled by
frictional sliding on well-oriented pre-existing faults
with frictional coefficients of 0.6-0.9 under
hydrostatic fluid pressure
(frictional stress equilibrium).

Some ductile mechanisms may, however, relieve stress
and keep stress level beyond the frictional yield, as for
instance in the detached cover of forelands.



The critically stressed upper continental crust is
therefore able to sustain differential stresses as large
as 150-200 MPaq, so its strength makes it able to
transmit a significant part of orogenic stresses from
the plate boundary across the far foreland



From differential stress magnitudes to paleoburial
and exhumation path in fold-thrust belt :
The outer Albanides case
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Calcite twins :
a powerful tool which may help constrain ...

- stress orientations, regional structural/tectonic histories and
geodynamic evolution;

- values of tectonic (paleo)stress magnitudes;
- upper crust mechanics;

- micro-mechanisms of internal deformation of carbonate rocks
in folded/fractured reservoirs:

- basin/thrust belt modelling

.. among others...



Comparison of paleostresses (from calcite twins,
fault slips, ...) and contemporary stresses in
terms of patterns and physical meaning



(Lacombe, 2001)
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Concepts and techniques underlying determinations of
contemporary stresses and paleostresses are inherently
different, and both types of stress data do not have strictly the
same geological meaning.

Contemporary stresses measured /n situreflect local,
instantaneous ambient crustal stresses, while reconstructed
paleostresses reflect ancient crustal stresses at the particular
time of tectonic deformation, averaged over the duration of a
tectonic event and over a given rock volume.

Although to this respect contemporary stresses and
paleostresses are not directly comparable, their analyses however
rely on the same mechanics, and they constitute complementary
stress data sets.



Paleostresses reflect stresses at the particular time of tectonic
deformation, averaged over the duration of a tectonic event;
both quantities can interestingly be compared in terms of
patterns, at the scale of plate interiors or at more local scale.

Combination of both types of stress data provides new
constraints on the differential stress gradients with depth, which
are to date still poorly known.

Combining contemporary and paleostress
data allows us to extend our stress/depth database in
various settings, i.e., away horizontally from drill holes, and
vertically by obtaining information on stress magnitudes at depth
more or less continuously down to the brittle-ductile transition.

Finally, such a combination of stress data therefore brings useful
information on the strength and mechanical behaviour of the
upper continental crust over times scales of several tens of Ma,

and should be taken into account in future modelling.



There may be more variability between different methods to
infer contemporary stresses than between similar methods used
to infer contemporary stresses and paleostresses in term of
space.

Within contemporary stress methods, borehole or stress relief
techniques are local whereas focal mechanism inversion may
involve a very large volume.

Within paleostress stress methods, tension cracks or stylolites
or calcite twinning are very local whereas fault slip inversion
involves a volume that depends on the outcrop size.

The main issue is thus how to combine up or down scale results
obtained from different methods, and this applies both to

contemporary stresses and to paleostresses.



On a tectonic point of view, the similarity of stress and
paleostress regimes may allow to go back into the past to
determine over which time span the overall pattern of orogenic
stresses has remained nearly unchanged, hence the
regional tectonic regime and the plate kinematics
remained more or less stable.

On a mechanical point of view, spatial and temporal
stress/paleostress perturbations related to fault kinematics,
when combined with mechanical modelling, may help constrain the
rheological behaviour of the upper continental crust over time
scales of up to tens of Ma.
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