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1  | INTRODUC TION

Providing quantitative estimates of the evolution of past stress 
magnitudes over time is a challenging task, albeit important to 
understand the long-term mechanical and paleohydrological be-
haviour of the upper crust. While strain mostly distribute at plate 
boundaries, there is a significant intraplate stress transmission 
thousands of kilometres away from the source of the stress that 
leads to the development of mesostructures such as fractures or 
stylolites before and/or beyond macrostructures such as folds and 
thrusts (Lacombe & Mouthereau, 1999; Tavani et al., 2015; Weil & 
Yonkee, 2012). The use of calcite twinning paleopiezometry doc-
umented an overall cratonward decrease in orogenic stress, with 
a drop of differential stress (σd = σ1 − σ3) values in the first hun-
dred kilometres from the orogen hinterland/foreland boundary 

(>100 MPa to 20 MPa; Beaudoin & Lacombe, 2018). The reason of 
this stress transmission pattern and its dependence on the orogenic 
tectonic style are still debated (Lacombe, 2010; Van der Pluijm, 
Craddock, Graham, & Harris, 1997). To tackle this issue, we com-
bined existing stress data from calcite twinning paleopiezometry 
(Amrouch, Lacombe, Bellahsen, Daniel, & Callot, 2010) with orig-
inal σd values obtained from stylolite roughness paleopiezometry 
(Ebner, Toussaint, Schmittbuhl, Koehn, & Bons, 2010; Schmittbuhl, 
Renard, Gratier, & Toussaint, 2004) from the sedimentary cover 
of the Sheep Mountain-Little Sheep Mountain anticlines (Bighorn 
Basin, Wyoming, USA; Figure 1) where the network of systematic 
veins/mesoscale faults and paleostress reconstructions document 
two stages of layer-parallel shortening (LPS), related to thin-skinned 
(i.e. basement remaining undeformed) then to thick-skinned (i.e. in-
volving the basement) tectonics.
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Abstract
The Sheep Mountain-Little Sheep Mountain Anticlines, Bighorn Basin (USA) formed 
as basement-cored Laramide structures in the formerly undeformed foreland of 
the thin-skinned Sevier orogen. We take advantage of the well-constrained micro-
structural network there to reconstruct differential stress magnitudes that prevailed 
during both Sevier and Laramide layer-parallel shortening (LPS), before the onset of 
large-scale folding. Differential stress magnitudes determined from tectonic stylo-
lites are compared and combined to previous stress estimates from calcite twinning 
paleopiezometry in the same formations. During stress loading related to LPS, dif-
ferential stress magnitudes transmitted from the distant Sevier thin-skinned orogen 
into the sedimentary cover of the Bighorn basin (11–43 MPa) are higher than the dif-
ferential stress magnitudes accompanying the early stage of LPS related to the thick-
skinned Laramide deformation (2–19 MPa). This study illustrates that the tectonic 
style of an orogen affects the transmission of early orogenic stress into the stable 
continental interior.

www.wileyonlinelibrary.com/journal/ter
mailto:﻿
https://orcid.org/0000-0002-7027-8599
https://orcid.org/0000-0003-4167-7344
https://orcid.org/0000-0002-2276-2626
mailto:nicolas.beaudoin@univ-pau.fr
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fter.12451&domain=pdf&date_stamp=2020-02-06


226  |     BEAUDOIN et al.

2  | GEOLOGIC AL SET TING

The Bighorn Basin belongs to the thick-skinned Laramide Province 
of the Rocky Mountains (Figure 1c) that formed by latest Cretaceous 
until Paleogene times in response to the flat-slab subduction of the 
Farallon plate (Yonkee & Weil, 2015). Micro/meso-structural stud-
ies combined with absolute dating of vein cements (Amrouch et al., 
2010; Beaudoin, Bellahsen, Lacombe, Emmanuel, & Pironon, 2014; 
Beaudoin, Lacombe, Roberts, & Koehn, 2018; Beaudoin et al., 2012; 
Bellahsen, Fiore, & Pollard, 2006a; Craddock & van der Pluijm, 1999; 
Neely & Erslev, 2009; Varga, 1993; Weil & Yonkee, 2012; Yonkee & 
Weil, 2010) show that the sedimentary strata of the Bighorn Basin 
recorded (a) pre-Laramide LPS, related to compressive stress likely 
transmitted from the distant thin-skinned Sevier orogen at the time 
the basin was still part of the Sevier undeformed foreland (vein set 
S, σ1 striking WNW-ESE prior to folding, 81–72  Ma, Figure 2a); 
(b) Laramide LPS (vein set L-1, σ1 striking NE-SW prior to folding, 
72–50 Ma, Figure 2a); (c) Laramide thrust-related, basement-cored 
folding with veins developed at fold hinges (vein Set L-2, 50–35 Ma, 
Figure 2a). Field observations also document the occurrence of bed 
perpendicular tectonic stylolites with peaks oriented (a) ~WNW-ESE 
and (b) NE-SW after unfolding (Figure 2b, 2c; Amrouch, Beaudoin, 

Lacombe, Bellahsen, & Daniel, 2011; Amrouch et al., 2010). The ori-
entations of the stylolite peaks, commonly considered as reliable 
markers of the orientation of the tectonic stress (e.g. Koehn, Renard, 
Toussaint, & Passchier, 2007; Tavani et al., 2015; Weil & Yonkee, 
2012), together with their kinematic compatibility and chronological 
relationships with the veins of set S and L-1, respectively (Figure 2c), 
and with the conjugate reverse and strike-slip mesoscale faults that 
also developed during Laramide LPS (Amrouch et al., 2011, 2010) 
unambiguously support that these tectonic stylolites witness the 
successive horizontal compressive stress related to the Sevier and 
Laramide events, respectively.

3  | ST YLOLITE ROUGHNESS INVERSION 
FOR STRESS

Stylolites are serrated surfaces (Figure 2b) that develop by chemical 
dissolution under stress (Alvarez, Engelder, & Geiser, 1978; Fletcher & 
Pollard, 1981; Koehn et al., 2007; Toussaint et al., 2018). The growth and 
the morphology of a stylolite are rate-dependent (e.g. Stockdale, 1922); 
they are governed by the kinetics of dissolution and the distribution of 
heterogeneities, and are affected by the amount of clay enhancing the 

F I G U R E  1   (a) Stratigraphic column of the Bighorn Basin, modified after Neely and Erslev (2009). Red frames correspond to the studied 
formations, colours are related to the age of the formations following the key presented in B. (b) Geological map of the Bighorn Basin 
(Wyoming, USA), the insert shows the location of the area with regard to simplified tectonic provinces, it also shows the location of the 
map B as a black frame and of the cross-section C as a red line. The reconstructed orientations of the horizontal maximum principal stress 
are reported as plain arrows for the Laramide event, and as crossed arrows for the Sevier event. Orientations are from A: Varga (1993), 
B: Craddock and Van der Pluijm (1999), C: Neely and Erslev (2009), D: Amrouch et al. (2010), E: Beaudoin et al. (2012). (c) Cross section 
modified after Marshak et al. (2000). (d) Simplified geological maps of the Little Sheep Mountain-Sheep Mountain anticline. Location of 
sampling sites for tectonic stylolite paleopiezometry and for calcite twinning paleopiezometry are reported as numbered squares and 
labelled circles, respectively (* from Amrouch et al., 2010) [Colour figure can be viewed at wileyonlinelibrary.com]
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dissolution (Renard, Dysthe, Feder, Bjørlykke, & Jamtveit, 2001). Once 
dissolution starts, there is a thermodynamic competition between (a) a 
destabilizing (roughening) force due to pinning particles on the stylolite 
surface that resist dissolution, and (b) stabilizing (smoothening) forces, 
long-range elastic forces and local surface tension, that tend to flatten 
the stylolite surface by preferentially dissolving areas of local rough-
ness (Schmittbuhl et al., 2004). While the topography of the stylolite 
during its growth is sensitive to both strain rate and stress (Koehn, 
Ebner, Renard, Toussaint, & Passchier, 2012), the final topography of a 
stylolite is a saturation state that is reached over a short period of time, 
ca. 200 years (Schmittbuhl et al., 2004) at the end of dissolution due to 
local drop in solubility (Rolland et al., 2012). Hence, the final roughness, 
that is, the difference in height between two points along the stylo-
lite plane, reflects the ambient stress at the time pressure-dissolution 

stopped, and is dependent on neither strain rate nor lithology (Ebner, 
Koehn, Toussaint, Renard, & Schmittbuhl, 2009).

The stress inversion technique relies upon a fractal analysis of 
high-resolution 2D scans (12,800 dpi) of the final roughness on the 
stylolite surface. In most cases, the 1D topography of a stylolite is 
best described by a self-affine scaling invariance (Schmittbuhl et al., 
2004), that is, the rough shape is invariant under a range of scales. A 
classic way to determine the self-affinity of a signal is to analyze it 
with a Fourier power spectrum, that relates the wave number k 
(mm−1) to the squared Fourier transform modulus P(k) as P (k)∝k2H+1, 
where H is the roughness (or Hurst) exponent (Barabási & Stanley, 
1995). In the case of stylolites, such analysis typically exhibits 2 
power laws (Figure 3a): a large-scale (usually > 1 mm) law with a spe-
cific roughness exponent of 1.1 which reflects the elastic energy 

F I G U R E  2   (a) Schematic diagrams reporting the compressional trend, mode I veins (sets S, L-1, L-2), and stylolites developed during the 
Sevier LPS (1), the Laramide LPS (2) and the Laramide folding (3). The pre-existing structures are reported in black, the developing ones in 
red. For the sake of clarity, we omitted the Triassic-Paleogene overlying strata. P: Precambrian basement, C: Cambrian, O: Ordovician, D: 
Devonian, Ca-P: Carboniferous and Permian. (b) Sketch of microstructural observations proposing a possible sequence between tectonic 
stylolites with peaks oriented (1) WNW-ESE and (2) NE-SW and between veins oriented (3) NE-SW and (4) NW-SE, based on observed 
abutment and reopening relationships and supported by the general Sevier-Laramide sequence of deformation. (c) On the left-hand side, 
microphotograph of the thin section on which sequence B was built. On the right-hand side, field photographs of tectonic and bedding 
parallel stylolites in the Madison Formation at Sheep Mountain Anticline [Colour figure can be viewed at wileyonlinelibrary.com]
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dominated regime; and a small-scale law with a specific roughness 
exponent of 0.5 which reflects the surface energy dominated re-
gime. A third part of the data forms a flat tail at the lowest scales that 
reflects a resolution effect related to image treatment (Figure 3a). 
The scale of observation at which the self-affine invariance switches 
from one power law to the other one, defined as the crossover length 
Lc, is directly linked to the absolute magnitude of the mean and dif-
ferential stresses (σm and σd, respectively) that prevailed at the end of 
the life of a stylolite as Lc=

�E

��m�d
, with E the Young's modulus (Pa), γ 

the solid–fluid interfacial energy (J.m−2) and β a dimensionless con-
stant β = ν(1-2ν)/π with ν being the Poisson's ratio (Schmittbuhl et al., 
2004).

The evolution of the topography and related Lc on tectonic stylo-
lite surfaces exhibits a periodic anisotropy of the Lc (Ebner, Toussaint, 
et al., 2010) that can be reconstructed from a minimum of three cuts 
normal to the surface if one knows the mechanical/chemical param-
eters of the dissolved rock (Figure 3b; Beaudoin et al., 2016). If the 
reconstructed anisotropy returns minima and maxima aligned with 
the vertical and horizontal directions (Figure 3d), then it provides 
access to the horizontal crossover length Lh and to the vertical cross-
over length Lv, which yield the magnitudes of the horizontal maxi-
mum (σH) and minimum (σh) stresses as Lh

Lv

=
�H−�v

�H−�h
, provided the 

vertical stress σv (i.e. the weight of overburden) is known (Ebner, 
Toussaint, et al., 2010).

4  | SAMPLING STR ATEGY AND RESULTS

Because stylolite occurrence depends on lithology (Marshak 
& Engelder, 1985) and to limit the variability of rock type and 

mechanical properties of samples, Sevier and Laramide-related tec-
tonic stylolites were collected at different structural locations solely 
in the partly dolomitized, grainstone facies of the Mississippian 
Madison Formation and of the Permian Phosphoria Formation 
(Barbier, Hamon, Callot, Floquet, & Daniel, 2012; Figure 1a).

Three peak-parallel cuts were done for each stylolite with an 
angle between each cut (Table 1), and each roughness signal was in-
verted using the Fourier power spectrum (Figure 3c) (Ebner, Piazolo, 
Renard, & Koehn, 2010; Renard, 2004). The Lc anisotropy was re-
constructed from the three values of Lc (Figure 3d) (Beaudoin et al., 
2016). Successful inversion comprises 13 tectonic stylolites (Table 1, 
Figures S1–S3) sampled in the Madison Formation (n = 10) and in the 
Phosphoria Formation (n = 3).

To determine σd values, we considered a range of depths 
of deformation obtained by comparing published basin models 
(Beaudoin, Lacombe, Bellahsen, Amrouch, & Daniel, 2014; May et 
al., 2013) with the range of absolute U-Pb ages of the systematic 
veins S and L-1 related to Sevier and Laramide LPS (Beaudoin et 
al., 2018). This reveals that the Madison Formation was buried at 
depths of 1500–2450 m and 2450–2800 m at the time of Sevier and 
Laramide LPS, respectively (and we consider an average of 300 m 
less for the Phosphoria Fm.). We also use Poisson ratio and Young 
modulus obtained from mechanical tests on the Phosphoria and 
Madison Formations from Sheep Mountain (Amrouch et al., 2011, 
Table 1) and the classic solid–fluid interfacial energy value for dolo-
mite (0.24 J.m−2, Wright, Cygan, & Slater, 2001). The Lc is estimated 
assuming a linear-by-parts fit of the Fourier spectra modelled by a 
least square algorithm (Ebner et al., 2009). Such analytical solution 
returns the Lc within a 23% uncertainty (Rolland, Toussaint, Baud, 
Conil, & Landrein, 2014) that can be considered as the maximum 
methodological uncertainty as other parameters are known. Note 

F I G U R E  3   (a) Ideal example of Fourier power spectrum applied to 1D profile of stylolite roughness, showing the different expected 
power laws and where the crossover length sits. (b) Sketch of the cuttings through a tectonic stylolite to access the stylolite-plane 
anisotropy (after Beaudoin et al., 2016). (c) Example of treatment for three cuts on the sample SM24, crossover lengths Lc are reported as 
coloured crosses within 23% uncertainty. (d) Reconstructed periodic anisotropy of the Lc for the Sample SM24, using the Lc and angles 
presented in C. Similar dataset are presented for all samples as Figures S1–S3 [Colour figure can be viewed at wileyonlinelibrary.com]
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that an extra source of uncertainties can be found in the modelling 
of the periodic anisotropy from three cuts (Beaudoin et al., 2016).

Laramide-related σd values (n  =  8) range from 2  ±  0.5  MPa to 
19 ± 4.4 MPa (n = 7) while Sevier-related σd values (n = 5) range from 
11 ± 2.2 MPa to 24 ± 4.8 MPa (n = 6).

5  | DISCUSSION AND CONCLUSIONS

σd estimates from inversion of the roughness of tectonic stylolites were 
compared with published σd estimates from calcite twinning paleopi-
ezometry in the same formations (Figure 4) (Amrouch et al., 2010). We 
discarded the published σd values from calcite twinning paleopiezom-
etry interpreted as reflecting local stress perturbations at the tip of the 
upward propagating Laramide thrust (Amrouch et al., 2010; Bellahsen, 
Fiore, & Pollard, 2006b) rather than the regional stress field of interest.

To account for the fact σd values inferred from tectonic sty-
lolites are systematically lower than those inferred from calcite 
twinning when considering each deformation event (i.e. Sevier 
or Laramide) (Figure 4), we propose that stylolite development 
mostly predates vein formation and calcite twinning strain in a 
stress build-up model. This sequence could be the reason why the 
local stress perturbation above the tip of the basement fault is 
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F I G U R E  4   Location of samples (according to their longitude 
in decimal degrees) versus differential stress magnitudes (σ₁-σ₃, 
MPa) obtained from inversion of tectonic stylolite roughness 
(squares) and calcite twinning (circles). Green data points represent 
the Laramide-related σd, and the blue data points represent the 
Sevier-related σd. Error bars on squares account for the overall 
uncertainty for each method. Double arrows and dashed lines 
represent the range of σd exclusive to Laramide layer-parallel 
shortening (green) and to Sevier layer-parallel shortening (blue), 
considering uncertainties. Insert is a conceptual model of stress 
transmission through shallow and deep stress guides that accounts 
for the difference in σd magnitudes sustained by sedimentary 
cover rocks during thin-skinned Sevier and thick-skinned Laramide 
LPS. Compressive stress related to Sevier (1) and Laramide (2) 
layer-parallel shortening is reported as blue and green convergent 
arrows, respectively, with larger size reflecting qualitatively higher 
σd. LPS – Layer Parallel Shortening [Colour figure can be viewed at 
wileyonlinelibrary.com]
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not recorded by the tectonic stylolites. We propose that during 
stress build-up in the flat-lying strata, pressure solution initiated 
with low σd along planar solubility heterogeneities in rocks (such 
as elongated pores) and halted rapidly, presumably by clogging 
around the dissolution planes (Toussaint et al., 2018). Stylolites 
would have therefore dissipated the earliest part of the stress 
build-up before saturating. Then, because increasing stress would 
not have been accommodated fully by pressure solution, stress 
would have accumulated enough to trigger vein development and 
calcite twinning, until newly formed mesoscale faulting ultimately 
took place if the required σd was reached.

Integration of both paleopiezometers highlights that most σd 
values related to Sevier LPS (11  ±  2.2–43  ±  9  MPa) are notably 
higher than σd values (2 ± 0.5–19 ± 4 MPa) related to Laramide LPS. 
The results document for the first time a systematic difference in 
σd magnitudes sustained by flat-lying strata at the same place in 
relation to the evolving deformation style over time. The σd values 
derived from both paleopiezometers reflect the σd prevailing at 
the burial depth at which the strata underwent LPS. Because the 
depth of deformation of strata was larger during the Laramide LPS 
than during the Sevier LPS (∆depth  ~  650  m on average, Table 1) 
and since σd increases with depth (Beaudoin & Lacombe, 2018; 
Lacombe, 2007), the normalization to a similar depth simply in-
creases the difference between σd values associated with the 
Sevier and the Laramide LPS, thus confirming that this difference 
in σd values reflects a significant trend.

We propose that the stress recorded in the Bighorn Basin was 
first efficiently transmitted from the distant Sevier thin-skinned oro-
gen into the stable foreland through a shallow stress guide, that is 
the sedimentary cover (Figure 4), where the stress  reached values 
compatible with the σd values derived from calcite twins for the 
Sevier foreland elsewhere (20–40 MPa, van der Pluijm et al., 1997). 
We further propose that the low Laramide σd reconstructed in the 
cover rocks represents only a fraction of the source stress transmit-
ted forelandward through a deep (crustal or lithospheric) stress guide 
(Figure 4) (Erslev, 1993). We speculate that most of the stress was 
dissipated at depth while triggering the inversion of inherited base-
ment normal faults (Lacombe & Bellahsen, 2016; Marshak, Karlstrom, 
& Timmons, 2000) and so as it was transmitted upward into the at-
tached cover during the early stage of Laramide LPS, ~20 Ma after 
the onset of exhumation of Laramide basement arches (Beaudoin, 
Lacombe, Roberts, & Koehn, 2019), the Laramide LPS-related σd re-
mained much lower compared to former Sevier σd values. It was only 
at the time of later generalized Laramide large-scale basement-cored 
folding that σd strongly increased to reach their maximum values in 
the cover rocks (Amrouch et al., 2011).

This study therefore illustrates that the tectonic style of an oro-
gen affects the magnitude of the σd transmitted towards the stable 
continental interior and therefore challenges previous models of 
cratonward decrease in σd regardless of the structural style of the 
orogen. Beyond regional implications, this study further establishes 
tectonic stylolite roughness inversion as a reliable and powerful pa-
leopiezometer to constrain stress build-up in poorly deformed strata 

of stable orogenic forelands, which places it as a useful complement 
of calcite twinning paleopiezometry.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.
Figure S1. Results of stylolite roughness inversion, per sample in 
the Little Sheep Mountain anticline. A- Crossover lengths Lc are 
reported as crosses within 23% uncertainty for the three cuts, B- 
Reconstructed periodic anisotropy for the corresponding samples, 

red squares are Lc, dotted line represents the vertical plane with 
respect to the orientation of the stylolite before strata tilting.
Figure S2. Results of stylolite roughness inversion, per sample in 
the Sheep Mountain anticline. Crossover lengths Lc are reported as 
crosses within 23% uncertainty for the three cuts, B- Reconstructed 
periodic anisotropy for the corresponding samples, red squares are 
Lc, dotted line represents the vertical plane with respect to orienta-
tion of the stylolite before strata tilting.
Figure S3. Results of stylolite roughness inversion, per sample in the 
Sheep Mountain anticline. Reconstructed periodic anisotropy for 
the corresponding samples presented on Figure S2, red squares are 
Lc, dotted line represents the vertical plane with respect to orienta-
tion of the stylolite before strata tilting.
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